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Abstract: Eight popular nature inspired algorithms are compared with the blind random search and three ad-
vanced adaptive variants of differential evolution (DE) on real-world problems benchmark collected for CEC 2011
algorithms competition. The results show the good performance of the adaptive DE variants and their superiority
over the other algorithms in the test problems. Some of the nature-inspired algorithms perform even worse that
the blind random search in some problems. This is a strong argument for recommendation for application, where
well-verified algorithm successful in competitions should be preferred instead of developing some new algorithms.
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1 Introduction

Solving the global optimization is a frequent part of real-world technological problems. In spite of the progress
made in the evolutionary algorithms and development of their adaptive variants in last decades, see e.g. [4, 6],
many authors often use either the basic variants of evolutionary algorithms or they try to develop some own
variant of nature-inspired algorithm to solve their actual optimization problem.

The main goal of this paper is to demonstrate that such approach is irrational because the advanced evo-
lutionary algorithms available to application are better performing than many basic variants of nature-inspired
algorithms. The advanced evolutionary algorithms supported by serious research should be preferred in the
applications.

Selected eight nature inspired algorithms are compared with three advanced DE variants and the blind
random search on the set of 22 real-world optimization problems collected for algorithm competition held at
CEC 2011 [5]. The results show that the nature-inspired algorithms are not competitive with the advanced DE
variants and some of them perform even worse than the blind random search.

2 Algorithms Selected to Experimental Comparison

A survey of bio-inspired algorithms has been presented recently in [7]. Authors formed categories and hierarchy
of optimization algorithms as: swarm-intelligence-based ⊂ bio-inspired ⊂ nature-inspired. This paper and the
book [18] were the main sources for the selection of nature-inspired algorithms for this experimental comparison.

The other algorithms were selected using our experience from two experimental studies [1, 2] and the pa-
per [10], where authors studied the performance of the various swarm and evolutionary algorithms in dependence
of the time demands using real-world optimization problems CEC 2011 [5].

2.1 Nature-Inspired Algorithms

Artificial bee colony algorithm (ABC) was proposed in 2005 [8]. Parameter limit, usually equal to the population
size, controls a number of unsuccessful new food positions, necessary to find a new random food position. An
employed bee position is updated by y(j) = P (i, j) + (P (i, j)− P (k, j)) U(−1, 1), where j is randomly selected
index from (1, D) of the position to be updated (D is the dimension of the problem), k is randomly selected bee
different from current ith bee and U(−1, 1) is a random number for the uniform distribution with parameters
given in parentheses.

Bat algorithm (Bat) uses parameter settings that follows the original publication [16]. Maximal and minimal
frequencies are set up fmax = 2, fmim = 0, local-search loudness parameter is initialized Ai = 0.9 for each bat-
individual and reduced if a new bat position is better than the old one using coefficient α = 0.95. Emission
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 rate parameter is initialized to each bat-individual ri = 0.1 and increased by parameter γ = 0.9 in the case of
successful offspring.

Dispersive flies optimization algorithm (DFO) was proposed in 2014 [12], the only control parameter called
disturbance threshold, is set to dt = 1× 10−3.

Cuckoo search algorithm (Cuckoo) was introduced in 2009 [19]. Probability of the cuckoos’ eggs laid in a
bird-host nest is set pa = 0.25 and the control parameter of Lévy flight random walk is set to λ = 3/2.

Firefly algorithm (Firefly) proposed in 2008 [18] has several control parameters that are set as follows,
randomization parameter α = 0.5, light absorption coefficient γ = 1, and attractiveness is updated using its
initial and minimal values β0 = 1, βmin = 0.2.

From the family of the algorithms modelling the life of plants, Flower Pollination Algorithm for Global
Optimization (Flower) proposed in 2012 [17] was selected to comparison. The main control parameter equals
to probability of switching between global and local search is set to p = 0.8. A parameter controlling Lévy
distribution is set up λ = 3/2, as in the Cuckoo search algorithm.

Particle swarm optimization (PSO) originally proposed in 1995 belongs to very popular and studied nature-
inspired algorithms [9]. The basic variant of PSO with slightly enhanced of particles’ velocities updating by
the variation coefficient w and coefficient c is used in this experimental comparison. The control parameter of
variation w is set for each generation as a linear interpolation from maximal value wmax = 1 to wmin = 0.3.
Parameter controlling a local and a global part of the velocity updating is set c = 1.05. Velocity is updated by
vi,G+1 = wG+1 vi,G+c U(0, 1) (pbest−xi)+c U(0, 1) (gbest−xi), where G denotes generation, U(0, 1) is random
number generated from uniform distribution with parameters given in parentheses, xi is current particle, pbest

is up-to-now best historical position of the current particle, and gbest is the best particle in swarm history.
Self-organizing migration algorithm (SOMA) was proposed in 2000 as a model of a pack of predators [20].

Soma has several controls parameters and particles strategies, the best settings based on our preliminary ex-
periments was taken for this experiment. Parameter controlling the length of individual way toward to leader is
set PathLenght = 2, the step size is set to Step = 0.11, and perturbation parameter is set Prt = 0.1. There are
several strategies of individual movement, the best performing strategy all-to-one as indicated the preliminary
experiments was applied to comparison on CEC 2011 benchmark.

2.2 Other Algorithms Selected for Comparison

Four other algorithms are selected to experimental comparison with nature-inspired algorithms. One of them
is the blind random search (RS ) which was proposed by Rastrigin [11] in 1963. RS is the simplest stochastic
algorithm for global optimization. It generates a new trial point from uniform distribution over the search space
and compares the function value of the trial point with the best point found so far. If the new trial point is
better (f(xnew) < f(xbest)), xnew replaces the old point. No learning mechanism or exploitation of knowledge
from previous search is used. The sense of RS inclusion into experiment is to have an algorithm as reference.
The algorithms outperformed by RS should not be considered seriously. The goal is to compare nature inspired
algorithms with the most naive stochastic optimization approach.

Three algorithms in experimental comparison are adaptive variants of differential evolution proposed recently.
The selected algorithms outperform the state-of-the-art DE variants declared in [6] or are competitive with them.

One of them is CoBiDE [15] which uses the covariance-matrix-based crossover and bimodal distribution of
control parameters (F and CR) with using the values of the parameters in stochastic manner in order to adapt
the parameter setting to the currently solved problem. The exploitation of covariance matrix should increase
the efficiency in the optimization problems where coordinates of points in the population are highly correlated.

L-SHADE was proposed by Tanabe and Fukunaga [14] as an improvement of their SHADE [13] algorithm.
Population size in L-SHADE is decreased linearly in order to prefer exploration in early stages and exploitation
in last stages of the search. Control parameters of F and CR are adapted according to the successes in previous
generations. An archive of outperformed old solutions is used for current-to-pbest/1 mutation. The results of
CEC 2014 show that L-SHADE is highly efficient algorithm capable to outperform many of the state-of-the-art
DE variants.

Another enhanced variant of SHADE is also chosen for the experiments. This algorithm called SHADE4
was introduced in [3] for CEC 2016 competition of optimization algorithms. In SHADE4, four different DE
strategies compete to generate a new trial point. These strategies are combinations of two kinds of mutation
and two types of crossover. A strategy applied to generating the new trial point is selected proportionally to
the success in previous generations.

3 Experiments

The test suite of 22 real-world problems selected for CEC 2011 competition in Special Session on Real-Parameter
Numerical Optimization [5] is used as a benchmark in the experimental comparison. The functions in the
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 benchmark differ in the computational complexity and in the dimension of the search space which varies from
D = 1 to D = 240, the dimensionality of most problems exceeds D = 20, see Table 1. The labels of the test
problems are taken from [5]. The test functions are described in [5] in detail, including the experimental settings
required for the competition. This experimental setting is also used in our experimental comparison. For each
algorithm and problem, 25 independent runs were carried out. The run of the algorithm stops if the prescribed
number of function evaluation MaxFES = 150000 is reached. The point in the terminal population with the
smallest function value is the solution of the problem found in the run.

The population size N = 90 was used in all the algorithms except L-SHADE algorithm where the population
size is not constant during the search but decreases linearly from Ninit = 18×D to Nmin = 4. The other control
parameters are set up according to recommendation of authors in their original papers.

4 Results

The minimal function values found in 25 runs are depicted as boxplots in Figure 1 to 3 in order to make visual
comparison of the algorithm efficiency easier. The test problems in these figures are sorted from the lowest
dimension in Figure 1 to higher dimension up to 3.

We can see in Figure 1 that six problems are solved successfully by most algorithms. There are only
three algorithms that failed in these problems, namely DFO, Firefly, and Bat performing worse than the blind
random search. Only two problems (T01 and T10) are more difficult and the performance of the algorithms
differs substantially but the adaptive DE variants outperformed the other algorithms.

Figure 2 shows different performance of the algorithms on these problems. Adaptive DE variants appear
among well-performing algorithms in all the problems, sometimes accompanied by SOMA, PSO, ABC, Cuckoo
or Flower. DFO, Bat, Firefly, and RS appear among worst-performing algorithms, DFO, Bat, and Firefly
sometimes perform worse than the blind random search.

Boxplots in Figure 3 demonstrate the good performance of adaptive DE variants. ABC, Cuckoo, Flower,
PSO, and SOMA are successful in some problems. DFO, Firefly, and Bat are permanently among the bad-
performing algorithms, their efficiency is comparable with the blind random search.

The results from Figures 1 to 3 are summarized in Table 2 where the results of Friedman tests are presented.
The test was carried out on medians of minimal function values at three stages of the search, namely after
FES = 50,000, 100,000, and 150,000. The medians at final stage of the search are presented in Table 1. The
null hypothesis on equivalent efficiency of the algorithms was rejected at the all stages of the search with
p < 5× 10−6. The algorithms in this table are ordered from left to right with respect to their mean rank from
Friedman test at the finish of the search, i.e. after reaching MaxFES=150,000. The results show the superiority
of the LSHADE and SHADE4 followed by CoBiDE and SOMA. The mean ranks of Cuckoo, Flower, PSO, and
ABC are approximately equal to the average rank. The performance of DFO, RS, Bat, and Firefly algorithms
is deep under average. Notice that the mean ranks of the algorithms after earlier stages of the search differ from
the final ones. SHADE4, CoBiDE, and SOMA are better than LSHADE at the first stage of the search.

The medians of function values found in the solutions of the problems are shown in Table 1, the minimal
values of median for each problem are underlined. The complete final results of the algorithms were analyzed
in more detail. Kruskal-Wallis non-parametric one-way ANOVA test is applied to each test problem. It was
found that the performance of the algorithms in comparison differs significantly. The null hypothesis on the
same performance is rejected in all the problems with achieved significance level p < 0.000005. Multiple
Kruskal-Wallis comparison was then also applied. The best performing algorithms significantly different from
the followers and mutually with no significant differences are listed in the column ”Best” ordered from the best.
The worst performing algorithms significantly different from their predecessors and mutually with no significant
differences are listed in the column ”Worst”, ordered from the worst performing algorithm.

5 Conclusion

The results of experimental comparison of eight popular nature-inspired algorithms with the blind random
search and three recent variants of adaptive DE demonstrate clearly the superiority the adaptive DE variants
in the efficiency.

Despite our expectation, CoBiDE algorithm using covariance-matrix crossover is not the most efficient
algorithm in this benchmark of real-world optimization problems. It seems that the frequency of problems with
highly correlated coordinates of the parameters is not so large as it is supposed. The superiority of LSHADE
in most test problems indicates the importance of population size adaptation in the solution of the real-world
problems.

We hope that it is a strong argument for the recommendation for researchers and engineers who need to
apply an algorithm to the solution of their real-world optimization problems: Please, do not develop your own
modification but use a state-of-the-art algorithm. These algorithms are supported by thorough research and
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Figure 1: Minimal function values from 25 runs in problems with D ≤ 15
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Figure 2: Minimal function values from 25 runs in problems with 20 ≤ D ≤ 30

Table 2: Mean ranks from Friedman tests at three stages of the search, FES = 50000, 100000, 150000

FES LSHA SHA4 CoBiDE SOMA Cuckoo Flower PSO ABC DFO RS Bat Firefly

50,000 5.3 1.9 3.8 4.0 6.3 6.3 5.8 5.6 9.5 10.0 9.6 10.0
100,000 4.4 2.0 3.5 4.4 6.2 6.3 5.5 6.1 9.3 9.9 10.0 10.3
150,000 2.1 2.5 3.7 4.7 6.0 6.4 6.4 6.5 9.5 9.6 10.1 10.5
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Figure 3: Minimal function values from 25 runs in problems with D ≥ 40
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 experimental comparison. You need not implement the selected algorithm themselves frequently. Source codes
of many algorithms are available at web sites of their authors or other researchers. For example, the source code
in Matlab of three algorithms used in this study is available at www1.osu.cz/∼bujok/, the source code of some
other state-of-the-art nature-inspired algorithms can be found on web site of MathWorks, www.mathworks.com.

References

[1] Bujok, P., Tvrd́ık: Enhanced success-history based parameter adaptation for differential evolution and real-
world optimization problems. In: G. Papa, M. Mernik (eds.) BIOMA, Bioinspired Optimization Methods
and their Applications, Bled, Slovenia, pp. 159–171 (2016)
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