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Abstract
The filled function method is an approach to finding global minimum points of
multidimensional unconstrained global optimization problems. The conventional
parametric filled functions have computational weaknesses when they are employed
in some benchmark optimization functions. This paper proposes a new integral
function algorithm based on the auxiliary function approach. The proposed method
can successfully be used to find the global minimum point of a function of several
variables. Some testing global optimization problems have been used to show
the ability of this recommended method. The integral function algorithm is then
implemented to solve the center-based data clustering problem. The results show
that the proposed algorithm can solve the problem successfully.
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1 Introduction

Many problems in real life require optimal solutions. It
encourages scholars working in numerical optimization
to create the most efficient method. Bio-inspired al-
gorithms and surrogate-assisted methods (see [20, 14,
10, 18, 12, 27]) can solve the black-box optimization
problem. Flexibility is the main characteristic of these
methods. However, the convergence is based on prob-
ability. Therefore, those algorithms are expensive in
CPU time. Deterministic approaches promise guar-
anteed convergence, although the problems solved are
usually less extensive than those that stochastic ap-
proaches can solve. The filled function method [7, 6, 8]
and the DIRECT method [11, 31] are examples of
methods that fall into the deterministic approach. This
research is focused on the filled function method.

There has been a recent growth in parametric-filled
function methods in global optimization problems.
This is due to the development of nonlinear function
optimization problems, which have many local mini-
mum points in the search domains. These problems are
widespread in applications such as engineering, finance,
social science, biology, etc. The methods such as New-
ton’s steepest descent, quasi-Newton, trust region, and
conjugate gradient methods are well executed for ob-
taining a local solution and globally determined when
solving convex optimization problems [25]. Neverthe-
less, if the problems contain a non-convexity structure,
those methods fail to find a global solution.

Consequently, the global optimization problem is a
challenging computational job for researchers [32]. The
parametric filled function method is an auxiliary func-

tion method that uses a point in an objective function,
usually a minimum point, to construct a function that
satisfies the definition of the filled function. The para-
metric filled function, which was first presented by Ge
[6, 7], gives us an excellent idea of using the local mini-
mum point to find the global minimum point. Further-
more, the basic outline of the function is explained as
follows.

a. Minimize the objective function by employing a
local minimization method; a minimum point of
the objective function is attained.

b. The filled function is constructed, and the point
close to the present minimum point is used as an
initial point to further minimize the filled function.

c. The minimum point of the filled function obtained
in b is used as an initial point for minimizing the
objective function, and the better minimum point
of the objective function will be obtained.

d. The global minimum point will be found if phases
b and c are repeated until the stopping criterion
is satisfied.

The filled function proposed in [7] has some unex-
pected attributes. The intended method strongly de-
pends on two parameters that are difficult to adjust to
satisfy several conditions. Because of this problem, Ge
and Qin in [8] proposed filled function that has only one
parameter and is twice continuously differentiable ev-
erywhere. However, the filled function proposed in [8]
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and its derivative are still influenced by the exponen-
tial term, which will be very large when the iterative
points are far from the current local minimum point.

Subsequently, several two-parameter and one-
parameter filled functions have been proposed, as
presented in [4, 19, 3, 21, 23, 22], to solve global
optimization problems. However, many filled function
methods proposed by various authors in the literature
have some drawbacks since their filled functions
still include exponential terms, logarithmic terms,
weight factors, and norms. In addition, selecting an
appropriate method for searching minimum points,
particularly for filled functions, involves numerous
variables because they must contain the Hessian
matrix and the inverse of a matrix. Several methods
do not include inverse or Hessian matrix, but it is still
believed that the gradient-based methods are more
effective in determining the minimum point of the
function.

In 2010, [26] introduced the parameter-free filled
function. However, the function is discontinuous at
some points. Besides, the filled function proposed by
[26] has the arctan term that makes this function very
flat if the points are far from the incumbent local mini-
mum point. This nature is the same as Ge’s filled func-
tion [7]. Several continuously differentiable filled func-
tions were proposed in [24, 28, 1]. The local minimum
point of those filled functions does, however, occasion-
ally exist. According to this fact, this study introduces
an integral function algorithm. Our new integral func-
tion method is made to eliminate the limitation of pre-
vious methods because our study has successfully de-
veloped such an auxiliary function that can solve mul-
tidimensional optimization problems. The advantage
of our filled function lies in the non-involvement of pa-
rameters, exponential, logarithmic, and weight factors.

This paper is organized as follows: In section 2, our
new integral function, including its definitions and the-
orems, is presented. Section 3 describes the algorithm
that includes an integral function in its phase. Numer-
ical results are presented in Section 4. Application of
the integral function to the data clustering problem is
provided in Section 5, and the conclusion will be pre-
sented in Section 6.

2 A New Integral Function and its Prop-
erties

This study solves the following unconstrained global
optimization problems.{

minω (t)

t ∈ Rn . (1)

Throughout this paper, we require the following
assumptions.

Assumption 1: ω (t) is continuously differentiable.

Assumption 2: ω (t) → ∞ as ∥t∥ → ∞.

Assumption 3: The set G, defined by

G = {ω (t) |t ∈ F} ,

is finite, with F representing the set of all local
minimum points of Problem (1)

Since the number of local minimum points can be in-
finite, Assumption 3 requires that the number of local
minimum values of Problem (1) is finite. Assumption
2 implies the existence of a compact set ξ ∈ Rn whose
interior contains all minimum points of ω (t). We as-
sume that the value of ω (t) for t on the boundary of ξ
is greater than the value of ω (t) for any t in the interior
of ξ. Then, Problem (1) is equivalent to Problem (2).{

minω (t)

t ∈ ξ
(2)

In order to develop an auxiliary function approach
that can address the deficiencies experienced by the
filled function method, we offer the following integral
function.

ψi (t, t
∗
m) =


−
∫ ti

t∗
m(i)

(ω (t)− ω (t∗m)) dti

(
ti ≥ t∗m(i)

)
−
∫ t∗m(i)

ti

(ω (t)− ω (t∗m)) dti

(
ti < t∗m(i)

) ,
(3)

where
t∗m =

(
t∗m(1), . . . , t

∗
m(n)

)
is a local minimum point of ω (t), i = 1, . . . , n, with n
is the number of variables of ω (t), and

ω (t)− ω (t∗m) = ω
(
t∗m(1), . . . , tm(i), . . . , t

∗
m(n)

)
−ω

(
t∗m(1), . . . , t

∗
m(n)

)
, (4)

form = 1, . . . , q, with q is the number of local minimum
point of ω (t). Based on the form shown in Eq. (3), it
is clear that ψi (t, t

∗
m) is a one-dimensional function.

It is known that all filled functions given in the litera-
ture still need to select the directions ei (i = 1, . . . ,m0)
and m0 ≥ 2n. In contrast, we do not need to
select the direction in this paper since every func-
tion in Eq.(3) has included the directions. In other
words, each direction has a different function. Based
on Eq.(3), ψ1 (t, t

∗
m) and ψ2 (t, t

∗
m) are integral func-

tions for searching the global minimum point of ω(t)
in t1-axis (right side and left side of ti respectively),
while ψ3 (t, t

∗
m) and ψ4 (t, t

∗
m) are integral functions for

searching the global minimum point of ω(t) in t2-axis,
and so forth. Therefore, we will have 2n of integral
function where each function indicates the directions.

Theorems 1 - 5 show that ψi (t, t
∗
m) satisfies the spec-

ification to be qualified as a filled function, or in other
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words, Eq.(3) satisfies three conditions demanded by
the Definition 1.

Definition 1. [33] A function ψ (t, t∗m) is categorized
as a filled function constructed at t∗m if ψ (t, t∗m) meets
the following three conditions.

• t∗m is a strict local maximum point of ψ (t, t∗m);

• ψ (t, t∗m) does not own local minimum and saddle

points in ξ̂;

• If ξ̄ ̸= ∅, then ξ̄ contains local minimum point of
ψ (t, t∗m),

where
ξ̂ = {t ∈ ξ|ω (t) > ω (t∗m)} \ {t∗m}

and
ξ̄ = {t ∈ ξ|ω (t) ≤ ω (t∗m)} .

For the simplicity, integral function (3) can be written
as

ψ (t, t∗m) = −
∫ t

t∗m

ω (t)− ω (t∗m) dt,

because either

−
∫ ti

t∗
m(i)

ω (t)− ω (t∗m) dti

(
ti ≥ t∗m(i)

)
or

−
∫ t∗m(i)

ti

ω (t)− ω (t∗m) dti

(
ti < t∗m(i)

)
has the same behavior.

Theorem 1. If (1) t∗m ∈ F , (2) tm is a point such
that tm ̸= t∗m, where ω (tm) ≥ ω (t∗m). Then,

ψ (t, t∗m) ≤ 0 = ψ (t∗m, t
∗
m) .

Proof. From Eq. (3), we have

ψ (tm, t
∗
m) = −

∫ tm

t∗m

ω (tm)− ω (t∗m) dtm.

It follows from the assumption of the theorem,

ω (tm) ≥ ω (t∗m) .

This implies
ω (tm)− ω (t∗m) ≥ 0.

Since tm ̸= t∗m, we have∫ tm

t∗m

ω (tm)− ω (t∗m) dtm > 0.

Therefore,

ψ (tm, t
∗
m) < 0 = ψ (t∗m, t

∗
m) .

Theorem 2. If t∗m ∈ F , then t∗m is a strict local max-
imum point of ψ (t, t∗m).

Proof. t∗m is the element of F . This implies there exists
N (t∗m, ζ), which is the neighborhood of F , such that

ω (t) ≥ ω (t∗m) ,

∀t ∈ N (t∗m, ζ). It follows from Theorem 1, for all

t ∈ N (t∗m, ζ) ,

t ̸= t∗m,

ψ (t, t∗m) < 0 = ψ (t∗m, t
∗
m) .

Thus, t∗m is a strict local maximum point of ψ (t, t∗m).

Theorem 3. If (1) t∗m ∈ F , (2) t1 and t2 are two
points such that ∥t1 − t∗m∥ < ∥t2 − t∗m∥ and

ω (t∗m) < ω (t1) < ω (t2) .

Then,

ψ (t2, t
∗
m) < ψ (t1, t

∗
m) < 0 = ψ (t∗m, t

∗
m) .

Proof. Consider

ψ (t2, t
∗
m)− ψ (t1, t

∗
m) = −

∫ t2

t∗m

(ω (t2)− ω (t∗m)) dt2

+

∫ t1

t∗m

(ω (t1)− ω (t∗m)) dt1.

Since
ω (t∗m) < ω (t1) < ω (t2) ,

then

ω (t2)− ω (t∗m) > ω (t1)− ω (t∗m) > 0.

Therefore,

∫ t1

t∗m

(ω (t1)− ω (t∗m)) dt1−
∫ t2

t∗m

(ω (t2)− ω (t∗m)) dt2 < 0.

Consequently, ψ (t2, t
∗
m) < ψ (t1, t

∗
m) < 0 = ψ (t∗m, t

∗
m).

Theorem 4. If (1) t∗m ∈ F , (2) t is a point such that
ω (t) > ω (t∗m). Then t is not a stationary point of
ψ (t, t∗m).

Proof. For a given tm with ω (tm) > ω (t∗m), we have

∇ψ (tm, t
∗
m) = Dtm

(
−
∫ tm

t∗m

(ω (tm)− ω (t∗m)) dtm

)
.

From the fundamental theorem of Calculus,

∇ψ (tm, t
∗
m) = − (ω (tm)− ω (t∗m)) .

Since ω (tm) > ω (t∗m), then ∇ψ (tm, t
∗
m) ̸= 0
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Theorem 5. If t∗m ∈ F , then any local minimum point
or saddle point of ψ (t, t∗m) must belong to the set

ξ̄ = {t ∈ Rn|ω (t) ≤ ω (t∗m)} .

Proof. Assume that Theorem 5 is not true. Then, there
is a local minimum point or saddle point of ψ (t, t∗m),
denoted by t̃, such that t̃ /∈ ξ̄ and ω

(
t̃
)
> ω (t∗m). It

follows Theorem 2 t∗m is a strict local maximum point
of ψ (t, t∗m). Since t̃ is a local minimum or saddle point
of ψ (t, t∗m), thus t∗m ̸= t̃. If t̃ is a local minimum point
of ψ (t, t∗m), it contradicts Theorem 3, while if t̃ is a
saddle point of ψ (t, t∗m), it contradicts Theorem 4. As
a result, Theorem 5 is true.

Theorem 6. If t∗m is a global minimum point of ω (t),
then ψ (t, t∗m) < 0, ∀t ∈ ξ.

Proof. Since t∗m is a global minimum point of ω (t),
ω (t) ≥ ω (t∗m) for all t ∈ ξ. Thus, it follows from
Theorem 1, ψ (t, t∗m) < 0 for all t ∈ ξ.

3 The Algorithm

Derived from the theoretical properties of ψi (t, t
∗
m),

in this section, we describe our integral function algo-
rithm, which applies to an unconstrained global opti-
mization problem. The general iterative of this integral
function is as follows: assume that t∗1 is not a global
minimum point of ω (t), then we can create an integral
function ψ (t, t∗m) at t∗1 to acquire such a point that
can be applied as a new initial point in order to bring
the minimization of ω (t) to the better minimum point
than t∗1. The process is conducted repeatedly until the
stopping criterion is met.

Input: t0, the initial point
Output: t∗I , global minimum point of ω (t)
Initialization:
a. Choose a constant υ, e.g., set υ := 0.1
b. Set i = 1, . . . , i0, where i0 = 2n
c. Set i := 1.
Main step
1. Minimize ω (t) by using t0 to obtain t∗I .
2. Built Eq.(3)
3. if i > i0

then go to 7
else go to the next step

4. Find t̄i, the stationary point of ψi (t, t
∗
I)

5. Minimize ω (t) by using t̄i to obtain t∗II
6. if ω (t∗II) < ω (t∗I) and t

∗
II ∈ ξ

then set i := 1, t∗I = t∗II , and go to 2
else set i := i+ 1 and go to 3

7. Algorithm stops and t∗I is taken as a
global minimum.

There are two phases in the algorithm. First,
minimizing the objective function ω (t) using a local
search procedure (we implement the steepest descent
method). In this phase, t∗I is obtained. In the second

phase, integral function ψi (t, t
∗
I) is constructed. Inte-

gral function ψi (t, t
∗
I) is minimized, then we will yield

t̄i, and phase 2 ends. The algorithm will reenter phase
1, with t̄i as the starting point to find t∗II , a new min-
imum point of ω (t) if such one exists. The iteration
process is repeated until a stopping criterion is met.
The last local minimum point to be found is assumed
to be the global minimum point of ω (t). The explana-
tion of our integral function in the algorithm is given
in the following paragraphs.

A set of 2n integral functions is chosen in step 2,
where each integral function represents the direction.
For example, assume that we solve the two-variable
function ω (t), with t∗I = (t∗1, t

∗
2) as the first local min-

imum point of ω (t), which is gained in step 1. Thus,
we have the following four integral functions.

ψ1 (t, t
∗
I) = −

∫ t1

t∗1

(ω (t1, t
∗
2)− ω (t∗1, t

∗
2))dt1,

for (t1 ≥ t∗1, t2 = t∗2).

ψ2 (t, t
∗
I) = −

∫ t∗1

t1

(ω (t1, t
∗
2)− ω (t∗1, t

∗
2))dt1,

for (t1 < t∗1, t2 = t∗2).

ψ3 (t, t
∗
I) = −

∫ t2

t∗2

(ω (t∗1, t2)− ω (t∗1, t
∗
2))dt2,

for (t2 ≥ t∗2, t1 = t∗1).

ψ4 (t, t
∗
I) = −

∫ t∗2

t2

(ω (t∗1, t2)− ω (t∗1, t
∗
2))dt2,

for (t2 < t∗2, t1 = t∗1).

It can be seen clearly that ψ1 - ψ4 are one-variable
functions. ψ1 is one-variable function for which t2
is fixed for the positive t1-axis direction, ψ2 is one-
variable function for which t2 is fixed, for the negative
t1-axis direction, ψ3 is one-variable function which t1
is fixed for the positive t2-axis direction, and ψ4 is one-
variable function for which t1 is fixed for the negative
t2-axis direction.

Each stationary point of ψ (t, t∗m) will be paired with
the number that has been fixed. For example, if we
obtain the local minimum point or inflection point t̄1
of ψ1 or ψ2, then (t̄1, t

∗
2) will become the initial point for

minimizing ω (t) in step 5. Otherwise, if the stationary
point t̄2 is obtained from ψ3 or ψ4, (t

∗
1, t̄2) will be taken

as the initial point.
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4 Numerical Results

In this section, we apply our integral function algo-
rithm to some standard testing problems derived from
the literature [26]. The proposed algorithm, and the al-
gorithm given in [26] for comparison purposes, is pro-
grammed by Microsoft Visual C++ 6.0 for working
on the Windows 10 system with Intel(R) Core(TM) i3
Processor 2.3G CPU and 4G RAM. Numerical results
illustrate that the method is competent. The following
notations are used in Tables 1 - 3

1. n is the number of variables of a testing functions,

2. Ft is the total number of function evaluations of
ω (t) and ψi (t, t

∗
m) before termination by our al-

gorithm,

3. Gt is the total number of gradient evaluations of
ω (t) before termination by our algorithm,

4. Ftl is the total number of function evaluations of
ω (t) and ψi (t, t

∗
m) before termination by the al-

gorithm proposed by [26],

5. Gtl is the total number of gradient evaluations of
ω (t) before termination by the algorithm proposed
by [26]

6. υ is a small positive number used as an addition
to the minimum point when it will be used to min-
imize the integral function.

Table 1: General computational results by our algo-
rithm.

Problem t0 υ n Ft Ftl

1 (-1.6,0.9) 0.1 2 90 40

2 (-2 , -1) 0.1 2 304 145

3 (2 , 2) 0.1 2 159 74

4 (-1 , -1) 0.1 2 707 349

5 (10 , 10) 0.1 2 425 137

6 (1 , -1) 0.1 2 797 398

7 (1 , 1) 0.1 2 221 94

8 (3 , 3) 0.1 2 788 147

(0 , 0) 0.1 2 1432 706

(10 , -10) 0.1 2 2111 1045

9 (2 , 2 , 2) 0.1 3 4447 2208

(2 , ..., 2) 0.1 5 5087 2525

(2 , ..., 2) 0.1 7 4354 2156

(2 , ..., 2) 0.1 10 4692 2316

Table 1 provides the general computational result of
the integral function algorithm (Algorithm 3). It indi-
cates that Algorithm 3 successfully obtained the global
minimum point of the given examples. Table 2 com-
pares Algorithm 3 and the algorithm offered in [26].
We use the same initial point for our algorithm and al-
gorithm in [26]. In the framework that the comparison
is fair enough, we use the same method in minimiz-
ing the objective function and integral function (filled

Table 2: Comparison of the results between our algo-
rithm and the algorithm proposed in [26].

Problem t0 υ n Ft Ftl Ftl Gtl

1 (-1.6,0.9) 0.1 2 90 40 1013 110

2 (-2 , -1) 0.1 2 304 145 1525 168

3 (2 , 2) 0.1 2 159 74 1173 91

4 (-1 , -1) 0.1 2 707 349 1425 775

5 (10 , 10) 0.1 2 425 137 1363 186

6 (1 , -1) 0.1 2 797 398 1775 95

7 (1 , 1) 0.1 2 221 94 1972 231

8 (3 , 3) 0.1 2 788 147 2143 279

(0 , 0) 0.1 2 1432 706 1723 327

(10 , -10) 0.1 2 2111 1045 3439 127

9 (2 , 2 , 2) 0.1 3 4447 2208 2467 227

(2 , ..., 2) 0.1 5 5087 2525 4497 1053

(2 , ..., 2) 0.1 7 4354 2156 9735 1683

(2 , ..., 2) 0.1 10 4692 2316 13091 2167

function for the method proposed in [26]). We found
that in minimizing the filled function in [26], we could
not use its gradient for the search direction. Therefore,
another search direction stated in [26] was used.

It can be seen in Table 3 that our integral function
is more effective. All function evaluations are less than
those yielded by the algorithm proposed by [26]. The
exception is for the n-dimensional function (n = 3).
Function evaluation obtained by Algorithm 3 is 4447,
while function evaluation gained by the algorithm in
[26] is 2467. So as for the aspect gradient evaluation,
Algorithm 3 performs better than that algorithm in
[26]. Except for gradient evaluations, the Rastrigin
and two dimensional functions (c = 0.5) have more
gradient evaluations. However, it can be understood
since our integral function can obtain the entire ex-
treme points of a function. However, in this paper, we
are only concerned with obtaining a global minimum
point. However, this kind of nature of our integral
function has affected function evaluation, especially for
functions with many extreme points.

5 Application to Data Clustering Problem

Grouping data sets into some clusters is one of the un-
supervised pattern classifications. It has been broadly
implemented in various real problems such as pattern
recognition, machine learning, text classification, and
other problems (see [2, 30]). Some approaches can be
employed in clustering data. One of the most popular
methods is the K-means algorithm. The algorithm ob-
tains the minimum distance of the data into the center
for each partition. The K-means algorithm originally
used the Euclidean distance to operate its algorithm.
However, according to [29], that distance sometimes is
unsuitable. Since clustering is the minimization prob-
lem, K-means challenges non-convex and nonlinear op-
timization. This fact brings many scholars to solve
the clustering problem through the optimization point
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of view. In the optimization approaches, the data is
modeled into the objective function and then solved
by implementing minimization procedures. Therefore,
the appropriate method chosen is one of the key suc-
cesses in obtaining the optimal cluster. Since the inte-
gral function algorithm in this paper is a global min-
imization algorithm, in this section, we are willing to
examine the proposed algorithm’s reliability to solve
the clustering problem.
The purpose of this section is the implementation of

Algorithm 3. For this purpose, we use the optimization
model initiated by [29], which has the following form.

min
τ1,...,τk∈R

(
−ε

m∑
p=1

ln
k∑

q=1

exp

(
−∥τq − tp∥2

ε

))
, (5)

where τ1, . . . , τk ∈ R denotes the centers for each k dis-
joint partitions of the data set

A = {tp ∈ Rn|p = 1, . . . ,m} ⊂ Rn.

Eq.(5) will be solved by Algorithm 3. We use the ex-
ample in [13].

Example 1. Let Table 3 is a data set where the ele-
ments denoted by tp, p = 1, . . . , 20. The data will be
partitioned into two clusters. In the first phase, all tp
are substituted to Eq.(5). The next step is solving the
optimization model using Algorithm 3 to obtain the
optimal center for each cluster.

Table 3: Data set

t1 t2 t3 t4 t5

0.456535 0.658425 0.868230 0.086283 0.704274

t6 t7 t8 t9 t10

0.063848 0.795001 0.684515 0.040520 0.824774

t11 t12 t13 t14 t15

0.957827 0.486618 0.008372 0.081007 0.251257

t16 t17 t18 t19 t20

0.907372 0.014313 0.783009 0.743946 0.066294

For the data set given in Table 3, Algorithm 3 success
in obtaining centers

(τ∗1 , τ
∗
2 ) = (0.0765, 0.7392) ,

with the number of iterations and function evaluations
are 40 and 1829, respectively. From the results, it can
be shown that Algorithm 3 can be used as one of the
alternatives when solving center-based data clustering
problems.

6 Conclusion and Future work

The more problems in the real world can be mod-
eled into the optimization model, the higher the de-
mand for minimization methods with efficient com-
putational performance. In this regard, many meth-
ods have been offered with various advantages. This

paper offers a new deterministic approach to solve
global optimization problems: the integral function al-
gorithm. Uniquely, even though the optimization prob-
lems solved are multi-dimensional, the approach used
in this study is a one-variable function approach. With
this property, the computation stage becomes simpler.
In addition, the integral function initiated in this study
does not involve parameters usually included by similar
methods. The reliability and efficiency of the proposed
method are demonstrated through numerical simula-
tions and numerical comparisons with other similar
methods available in the literature. The proposed al-
gorithm is also implemented in the final phase to solve
the center-based data clustering problem. The imple-
mentation results show that the proposed algorithm
can obtain the optimal center of the given data set.

The numerical simulations conducted in this research
are limited to several benchmark objective functions.
In order to confirm that the proposed method is more
reliable in solving global optimization problems, fur-
ther research will be carried out on non-trivial op-
timization problems, such as black-box optimization
problem [9, 15], GKLS generator [5, 16], and zigzag-
based benchmark functions [13, 17].
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