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Abstract
One of the essential aspects of smart farming and precision agriculture is quickly
and accurately identifying diseases. Utilizing plant imaging and recently devel-
oped machine learning algorithms, the timely detection of diseases provides many
benefits to farmers regarding crop and product quality. Specifically, for farmers in
remote areas, disease diagnostics on edge devices is the most effective and optimal
method to handle crop damage as quickly as possible. However, the limitations
posed by the equipment’s limited resources have reduced the accuracy of disease
detection. Consequently, adopting an efficient machine-learning model and de-
creasing the model size to fit the edge device is an exciting problem that receives
significant attention from researchers and developers. This work takes advantage
of previous research on deep learning model performance evaluation to present a
model that applies to both the Plant-Village laboratory dataset and the Plant-Doc
natural-type dataset. The evaluation results indicate that the proposed model is as
effective as the current state-of-the-art model. Moreover, due to the quantization
technique, the system performance stays the same when the model size is reduced
to accommodate the edge device.
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1 Introduction

Today, intelligent agriculture based on the Internet of
things and artificial intelligence platforms is a key trend
in technological innovation. Automated systems for in-
formation gathering, processing, and decision-making
have helped farmers reduce their workload and increase
productivity by utilizing the knowledge of other users.
Computer vision rapidly identifies crop diseases, limits
risks, and makes accurate estimations. [15] [25] [19].

Nowadays, agriculture requires cutting-edge tech-
nologies such as IoT [24] and AI [13] to maintain agri-
cultural productivity. There are numerous examples of
AI and ML being applied in the agri-food industry [5]
because of the growing importance of AI in the food
industry due to its capacity to reduce food waste, in-
crease production security, and improve the cleaning
of machines, diseases, and pests. The use of machine
learning, a subset of artificial intelligence, has the po-
tential to overcome several obstacles in the develop-
ment of knowledge-based farming systems [3]. There
is a large amount of research on the many machine-
learning algorithms used in agriculture’s diverse appli-
cation sectors. Consequently, it is essential to establish
the appropriate technique for assuring precision and
consistency in a particular agricultural application.
Due to the development of machine learning mod-
els, image processing can now detect plant diseases
quickly and efficiently. Some popular convolution neu-

ral network architectures today, including AlexNet,
GoogLeNet, and ResNet, have been widely applied.
Recent progress in plant disease detection research uti-
lizing the CNN model for image identification applica-
tions has produced good results. On the other hand,
Deep networks are learned by estimating the neu-
ral network’s parameters to enhance mapping during
training. Recent advances in mathematics and com-
puter science have substantially improved this compu-
tationally intensive method. Consequently, the Deep
convolutional neural network (DCNN) approach can
give substantial advantages for problems involving in-
consistent data, such as the plant disease data set [14].
Some laboratory examinations of data sets will pro-
duce results that differ from those obtained in nature.
In this work, we examine the performance character-
istics of the DCNN model versus the state-of-the-art
model using data collected from the real world.

The paper is structured as follows: The following
section briefly describes the related works. In Section
3, two sets of testing datasets and models are brief
introductions. The proposed DCNN model and the
results of performance evaluation and comparison will
be presented in Section 4. Finally, the conclusions and
future study directions are given.
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2 Relate work

Because of the increasing exploration of IoT devices,
Edge computing and AI solutions, particularly deep
learning, are merged in a robust approach to provid-
ing edge intelligence. The limited resource availability
of edge devices is one of the most difficult challenges
to overcome. It prevents the implementation of ac-
curate, sophisticated computations for deep learning
algorithms. Consumption of computational resources
or processing power is an additional issue that must
be considered when deploying in a real-world scenario
[21]. As a result, a vast portion of current research
focuses on developing AI based on edge models.

Today, DNN is utilized as an effective inference
engine in various applications. Outstanding is the
customer-friendly services that, among other technolo-
gies, use voice assistants, machine translation, and im-
age retrieval to provide individual convenience [10].
Despite this, the DNN model, the current core com-
ponent of artificial intelligence, requires a substantial
amount of processing and is becoming ”wider” (more
filters in a layer) and ”deeper” (more layers) with bil-
lions of parameters and millions of floating point oper-
ations (FLOP). These ’deeper’ models provide greater
precision at the tradeoff of increased computational
complexity. In addition to latency restrictions, cloud
computing is associated with security and privacy con-
cerns. In industrial development solutions and au-
tonomous vehicles, the problem of response delay is
exceptionally harmful [4], [2]. Hence, edge computing
solutions can tackle this problem when edge computing
systems are located close to data generation to process
data locally and quickly [18] [29]. This geological dis-
tance unavoidably resulted in a ”computational gap”
between DNN models and edge systems with weaker
capabilities. To implement DNNs on the actual edge
device, two hardware- and software-based strategies
have been and are being developed. Some hardware
architectures, such as application-specific integrated
circuits (ASICs), tensor processing units (TPUs), or
FPGA-based acceleration approaches, are tailored to
implement DNN models. This strategy is frequently
expensive and does not support a large variety of DNN
models. The software-based approach, on the other
hand, offers flexibility and is less costly to design than
hardware. The goal is to create DNN models suit-
able for utilization with edge systems while providing
the appropriate performance and increasing accuracy.
Typical proposals in this field concentrate on build-
ing lightweight DNN models, compressing models, and
searching for new neural architectures. The study aims
to develop an efficient and adaptive DCNN model with
high accuracy. Moreover, the proposed model is re-
duced dimension by quantization method to be tailored
with edge devices.

3 Reivew of models and dataset

This section introduces some standard ML models used
for edge devices and 02 popular data sets in agriculture.

3.1 Applicated DNN models

SqueezeNet [9]. This machine learning (ML) model
is used to build a low-complexity calculation module
(Fire module), including convolution math distributed
in squeeze and expand layers. Additionally, several 3x3
convolutions were replaced with 1x1 convolutions to re-
duce weight.
MobileNet [11]. This machine learning model re-
places traditional convolution with depth-wise convo-
lution to achieve more efficient outcomes and lower
computational expenses. Depth-wise decomposes a
standard (k x k x n) convolution into a (k x k x
1) depth-wise convolution and a (1 x 1 x n) point-
wise convolution. Each input channel is convolutional
with depth-wise and point-wise convolution operators
that linearly aggregate depth-wise results to generate
a channel/feature map. Depth-wise separable convolu-
tion can drastically cut computation costs, decreasing
edge device inference time. MobileNetV2 incorporates
a linear bottleneck and inverted residual blocks to im-
prove performance and accuracy. MobileNetV3 inte-
grates NAS and NetAdapt to provide a more accurate
and efficient network topology.
ShuffleNet [28]. This model’s strategy is to use con-
volution in groups and combine channels to reduce
computational costs while maintaining accuracy. Shuf-
fleNetV2 recommends split channels to improve perfor-
mance.
GhostNet [7]. In this model, some features in the con-
volutional layers are highly correlated, leading to the
Ghost modules’ creation. It firstly uses conventional
convolution to extract some intrinsic features and then
creates additional features from the extracted intrinsic
features using less expensive linear processes.
EfficientNet [23]. The advantage of this model is
based on the influence of the three size ratios in the
DNN model to scale appropriately to achieve better
accuracy and fewer parameters.
In [11] showed some performance comparisons of the
above popular models. In the previous study [1], we
also evaluated the performance of the MobileNet V3
model on a specific dataset. It indicates through ex-
perimental findings that it can be deployed on typical
edge devices. MobileNet V3 has an accuracy of 96.58%,
a quick Inference/Initialization time of 127 ms and 11
ms, respectively, and uses a total of 7.4 MB of RAM,
making it the most efficient option for a real farm. To
match edge processors, data compression is a standard
method for purposes such as: Eliminating redundant
numbers or excessive parameters, quantizing to store
DNN network weights or intermediate results in low-
bit registers; or parametric distillation from the large
model to the small model [11]. In this study, we apply
the quantization method.
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3.2 Dataset

In agriculture, disease detection on plants remains a
complex process without the assistance of information
technology. And computer vision technologies have
proven particularly effective in the detection of disease.
Due to differences in picture attributes, however, the
datasets utilized by various DNN models generate
diverse practical outcomes. To demonstrate the effi-
cacy of the algorithms, the models mentioned above
frequently employ the laboratory dataset (PlantVil-
lage) and relatively few experimental models on the
naturally collected dataset (Cropped-PlantDoc). To
demonstrate the performance of the proposed model,
we will apply it to the Cropped-PlantDoc dataset
and compare it to other studies. Simultaneously,
quantization approaches are utilized to highlight the
concept’s merits that can be effectively implemented
on IoT edge devices. PlantVillage dataset. An
extensive, validated dataset of photos of damaged
and healthy plants is needed to develop accurate
image classifiers for diagnostic applications of plant
disease. Such a dataset did not exist until recently,
and even smaller datasets were not openly accessible.
The PlantVillage project has collected thousands of
images of healthy and diseased plants that are freely
accessible to the public. All images in the PlantVillage
database were captured at experimental research
stations and laboratories, with various brightness,
environment, and other user-specified settings. Even-
tually, the terminal (smartphone user) will charge
a picture in multiple ”random” conditions. More
than 50,000 of these images are currently hosted on
www.plantvillage.org and are accessible to the public
via American colleges (Penn State, Florida State, Cor-
nell, and others). The dataset contains 54,303 images
of healthy and unhealthy leaves, categorized by species
and disease into 38 categories. Apple, Blueberry,
Cherry, Corn, Grape, Orange, Peach, Bell Pepper,
Potato, Raspberry, Soybean, Squash, Strawberry,
and Tomato are covered. It comprises illustrations
of 17 fungal diseases, four bacterial diseases, two
molds (oomycete), two viral diseases, and one mite-
borne disease. There are images of healthy leaves on
12 crop species that are not visibly damaged by disease.

Cropped-PlantDoc. Cropped-PlantDoc is a
dataset for visually detecting leaf diseases. The
collection contains a total of 2,598 data points on 13
plant species and 17 diseases, the labeling of which
required around 300 hours of human effort. It is the
first dataset to include data from natural, uncontrolled
environmental conditions. This dataset was created
by downloading images from Google and Ecosia in
the farm environment. The dataset collected about
20,900 images using scientific and common names
and belonged to 38 classes of the dataset. Plant
Doc provides realistic images of healthy and diseased
plants to create a publicly available dataset.
Cropped-PlantDoc Dataset. To show the dif-

ference between our dataset and PlantVillage, we
built another Cropped-PlantDoc (C-PD) dataset
by cropping the image using the box information
envelope. Like PlantVillage, the idea is cut to only the
leaf, but these images are low quality, small in size,
and have different backgrounds. The total number of
leaf shapes after trimming 2,598 photos to 9,216, i.e.,
9,216 bound to boxes.

4 System model and experimental results

Unlike most existing studies, authors propose feeding a
DCNN CIE Lab instead of RGB color coordinates [17].
Authors modified an efficient Inception V3 architecture
[20] to include one branch specific for achromatic data
(L channel) and another department specific for chro-
matic data (AB channels). This modification takes ad-
vantage of the decoupling of chromatic and achromatic
information. Besides, splitting branches reduces the
number of trainable parameters and computation load
by up to 50% of the original figures using modified
layers. They achieved a state-of-the-art classification
accuracy of 99.48% on the Plant Village dataset and
76.91% on the Cropped-PlantDoc dataset. In this ses-
sion, we will use the MobilenetV3 model with the plan
doc dataset to compare the accuracy, then perform the
quantization of the MobilenetV3 model and the au-
thor’s [17] proposed model.

4.1 Our utilized model

MobileNetV3 was adapted to mobile phone CPUs
through hardware recognition network architecture
(NAS) searches supplemented by the NetAdapt al-
gorithm and improved by new architecture advances.
MobileNets [26] is a series of lightweight deep neu-
ral networks based on Depthwise Separable Convo-
lutions. It was followed by the improved version of
Version1, MobileNetV2. MobileNetV2 [16] continues
to use Depthwise Separable Convolutions in addition
to the following proposals: Linear bottlenecks and In-
verted Residual Blocks (shortcut connections between
bottlenecks). MobileNetV3 [8] achieves better perfor-
mance with less FLOP with new improvements over its
predecessors with the following new block architecture:

In contrast to the previous version of MobileNet,
which was designed manually, MobileNetV3 relies on
AutoML [30] [27] [6] to find the best possible architec-
ture in the search space suitable for mobile computer
vision tasks. To make the most of the search space,
the author [8] pointed out two techniques sequences
implemented in the MnasNet [22] and NetAdapt [26].
First, search for a rough architecture using MnasNet,
using the enhanced learning feature to select the opti-
mal configuration from a set of discrete choices. Then,
refine the architecture using NetAdapt, an additional
technique that cuts out unused activation channels to
a small extent. It is possible to create large or small
models to provide the best possible performance under
different conditions. Later the author [8] also pointed
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Figure 1: Example of potato images in Planvillage dataset

Figure 2: Example images of PlantDoc Dataset

Figure 3: Blocks included in the MobiletnetV3 model

out how to improve the network by redesigning com-
putationally costly layers and modifying the non-linear
function to hard-swish (h-swish) based on Swish’s non-
linear function so that it could overcome the most sig-
nificant limitation of the Swish function being that it is
very inefficient when computing on mobile hardware.
The comparison of the soft and complex versions of
sigmoid and swish nonlinearities is shown in figure 4.
In his experiments, the author [8] found the complex
version of all these functions to have no discernible
difference in accuracy but multiple advantages from a
deployment perspective. First, optimized implementa-
tions of ReLU6 are available on virtually all software
and hardware frameworks. Second, in quantized mode,
it eliminates potential numerical precision loss caused
by different implementations of the approximate sig-
moid. Finally, in practice, h swish can be implemented
as a piece-wise function to reduce the number of mem-
ory accesses driving the latency cost down substan-
tially.

4.2 Training Results

After training with Tesla P80 GPU with 16GB VRAM
along with 12GB RAM using Google Colab, we train
to achieve the best model with the following train-
ing results: First, we trained and tested both Color-
Aware Two-Branch models with the LAB color sys-
tem and compared them with the efficient DNN model
MobileNetV3 on standard data sets taken in the lab-
oratory with full conditions and lighting, the results
achieved early model convergence to more than 99% in
just a few epoch, the graph shows that efficient DNN
model is mobile-net is optimized quite well and stable.
Similarly, we trained and tested the Color-Aware Two-
Branch model with the LAB color system and com-
pared it with the efficient DNN model MobileNetV3
on the data set captured and collected closer to re-
ality. In other words, it will be more challenging to
train the model, and the results achieved MobileNetV3-
Small model also soon converged to more than 99%
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in just about 5 to 10 epochs. The graph shows that
the efficient DNN model Mobilenet is optimized quite
well and stable. In contrast to the Color-Aware Two-
Branch model, convergence took up to 200 epochs to
catch up with MobileNetV3.

4.3 Parameters and comparison results

The results are collected and indicated in the table
above. With laboratory data, both models achieve high
accuracy of 99.54% and 99.48%, respectively. But in
addition to accuracy, there is also an essential factor
for the lightweight model Parameters. We can see the
difference when MobileNetV3-Small only needs 1.5M
compared to 5M of Shuler’s-Two-Branch, which still
achieves better accuracy. For the data to be close to
reality, to ensure accuracy, we replaced MobileNetV3-
Small with MobileNetV3-Large. And the Color-Aware
Two-Branch model selected an L-AB ratio of 50-50,
corresponding to the highest accuracy rate that the au-
thor [17] proposed. When testing, the accuracy of both
models has decreased compared to testing with previ-
ous data. However, the MobileNetV3 we used achieved
77.71% higher accuracy than Schuler’s 76.91% with the
same number of Parameters.

4.4 Experimental results on the reduced model by
quantization

From the table above, we can see that with the ef-
ficient Model MobilenetV3-Large, after each quantum
method, precision will reduce, especially when the com-
pression ratio is higher, leading to a more profound
accuracy reduction. Specifically, when the model is
compressed to float-16-bit format, the accuracy is re-
duced to 0.70, and with full-int-8-bit, the accuracy is
only 0.41. Similar to Precision, MobileNetV3’s Re-
call is not only reduced but also reduced further when
with full-int-8-bit quantization, Recall is only 0.22. In
contrast to MobiletNetV3-Large, both Precision and
Recall are virtually unchanged after each quantization
process for the Color-Aware Two-Branch model. The
results are similar for the Accuracy and F1-score pa-
rameters shown in Figure 7. The reason for this reduc-
tion is that the MobilenetV3 model, when designed,
aimed to be optimized for the edge device, so continu-
ing to perform quantization of the model will directly
reduce the model’s accuracy.

5 Conclusion

To choose a model suitable for edge devices but still
ensure accuracy when classifying images of pests and
diseases in agriculture, the paper presents the use of
the MobilenetV3 model for laboratory dataset as well
as dataset closer to reality, then compared with the
best one and got better results in terms of both accu-
racies as well as the number of parameters used. In
addition, the model quantization method is also ap-
plied to compare how the model accuracy changes after

quantization. However, the MobilenetV3 model after
quantization has significantly reduced accuracy, while
the State-of-the-art model [17] is almost unaffected.
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