
MENDEL — Soft Computing Journal, Volume 2 , No. ,  202 , Brno, Czech RepublicX

ISSN: 1803-3814 (Printed), 2571-3701 (Online) 
https://doi.org/10.13164/mendel.202 . .083

Mathematical Methods for 3D Reconstruction of Cell Structures

Dalibor Martǐsek�
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Abstract
The study of the complicated architecture of cell space structures is an important
problem in biology and medical research. Optical cuts of cells produced by confocal
microscopes contain a lot of information, however, most of this is unsubstantial
for human vision. Therefore, it is necessary to use mathematical algorithms for the
visualization of such images. Present software tools such as OpenGL or DirectX
run quickly in a graphic station with special graphic cards, run very unsatisfactory
on PC without these cards and outputs are usually poor for real data. These tools
are black boxes for a common user and make it impossible to correct and improve
them. With the method proposed, more parameters of the environment can be
set. The quality of the output is incomparable to the earlier described methods
and is worth increasing the computing time. We would like to offer mathematical
methods of 3D scalar data visualization describing new algorithms that run on
standard PCs very well.
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1 Introduction

Cells are obviously observed using a fluorescent scan
confocal microscope. Data images acquired by this mi-
croscope are scalar fields from a mathematical point of
view. Algorithms for their three-dimensional (3D) pro-
cessing can be classified into two groups: surface-fitting
algorithms (SF algorithms) and direct volume render-
ing algorithms (DVR algorithms). SF algorithms con-
struct a geometric surface representation of the scalar
field to be displayed and then construct this surface.
DVR algorithms display the scalar field directly with-
out surface representation.

The existing software tools used to reconstruct small
objects usually do not employ all the features of state-
of-the-art hardware. Since the existing software is
run on high-level computers, the efficiency of the algo-
rithms is not the issue. Technologies such as OpenGL
or DirectX can only be used on graphic stations with
special graphic cards with graphics accelerators. The
software programs recommended by microscope man-
ufacturers usually do not work on standard PCs. Data
visualization based on OpenGL or DirectX does run on
a PC, but only with great difficulties.

The main problem is the quality of output created by
means of OpenGL and DirectX. With the method pro-
posed, more parameters of the environment can be set,
making it possible to apply 3D filters to set the output
image sharpness in relation to the noise. The quality
of the output is incomparable and is worth increasing
the computing time.

For the study of the complicated architecture of 3D
structure of cells, we have more and more quality in-

struments available but the needed software support
falls behind slightly. Most of the programs provided
with these instruments are not able to master the 3D
object reconstruction at an appropriate level and, if
they are, companies do not publish any applied meth-
ods or algorithms for commercial reasons. Therefore
very little information can be found on these methods.

We would like to offer mathematical methods of
3D scalar data visualization describing new algorithms
that run on standard PCs very well. Some publications
([8, 10, 11, 15, 1]) were some of the first attempts in
this direction.

2 Current Methods

2.1 Primary Data

The primary data used in this paper have been pro-
vided by the Olympus Fluoview 1000 microscope by
Prof. Roman Janisch of the Department of Biology,
Faculty of Medicine, Masaryk University, Brno, Czech
Republic and Prof. Josef Reishig of the Institute of
Biology, Faculty of Medicine, Charles University in
Plzeň, Czech Republic. A confocal microscope output
is formed by a series of (usually a few tens of) optical
cuts through an examined object and our ambition is
to reconstruct the object on the basis of these cuts:
twodimensional-ly and especially three-dimensionally.
Biology and medical research use the fact that confocal
microscopy is basically a noninvasive and nondestruc-
tive kind of study of the space structure of cells and
tissues.
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Figure 1: Optical cuts of Paramecium caudatum cells. The 4-th, 7-th, 11-th and 15-th cut of eighteen optical
cuts has been choosen (8 bits grey scale, resolution of 490×490 pixels in each cut). Data provided by Prof.
Roman Janisch.

Figure 2: Optical cuts of Tobaco cells. The 20-th, 50-th and 80-th cut of one hundred optical cuts has been
choosen (RGB true color, resolution of 800×800 pixels in each cut). Data provided by Prof. Josef Reichig.

Figure 3: Optical cuts of Paramecium caudatum cells. The 20-th and 40-th cut of 56 optical cuts has been
chosen (RGB true color, resolution of 1600×1600 pixels in each cut). Data provided by Prof. Josef Reischig.

Figure 4: Optical cuts of Euplotes patela cells. The 7-th, 13-th, 18-th and 23-th cut of 27 optical cuts has been
chosen (pseudocolors: 27 cuts of nucleus – red, 27 cuts of other structures - green; 16 bits grey scale, resolution
of 450 ×460 pixels in each cut). Data provided by Prof. Roman Janisch.
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Figure 5: Output of the Ray Tracing algorithm where each point of the set has been evaluated by Phong
Illumination Model. Recursion depth is five. Software was developed by the author of this paper.

In Fig. 1, we can see optical cuts of Paramecium
caudatum cells (18 Images, each of them 8 bits grey
scale, resolu-tion of 490×490 pixels in original data).
In Fig. 2, there are illustrated optical cuts of Tobacco
cell (100 optical cuts, RGB true color, 800×800 pixels).
Furthermore, Paramecium caudatum (56 optical

cuts, RGB true color, 1200×1200 pixels) in Fig. 3 and
Euplotes Patela cell (2×27 optical cuts, nucleus in red,
other structures in green, color depth 16 bits, resolu-
tion of 450×460 pixels of each cut in original data (Fig.
4).

2.2 Current Common Principles of 3D Data Visu-
alization

In computer graphics, either vector or raster data can
be processed. In terms of graphic data, a vector is
understood in the traditional sense, i. e. it is under-
stood as an oriented line segment with an initial and
end point.
While displaying vector data, we usually work with

illumination as well. Light illuminates a scene (the
space displayed) in a certain direction. If a planar
optical interface had a microscopically ideal surface
then both reflection and refraction would preserve par-
allelism. However, a real body does not have a to-
tally smooth surface so both reflected and refracted
beams have various directions. Asperities have a frac-
tal character and the properties of reflected and re-
fracted beams can be described only approximately.

The first (and the simplest) illumination model for
n light sources was published by Bui Tuong Phong [4].
It is an empirical model of local illumination which
combines the light direction Lm of m-th light source,

Im its intensity, normal vector NP in calculated point
P and direction VP from which point P is observed.
Furthermore, ambient intensity Ia, specular (s), diffuse
(d) and ambient (a) part of the reflection and also its
“shininess” (h) is estimated. These parameters gives
following equation for illumination intensity IP in the
surface point P :

Ip = a · Ia +
n∑

m=1

Lm ·NP · Im · d+

n∑
m=1

(Vp · (2 · (Np · Lm) ·NP − Lm))h · Im · s
(1)

It is possible to achieve a realistic scene by combining
this model with so called ray tracing technique. A light
ray is sent through each pixel of output window and
all optic interactions with group of surfaces and solids
are recursively tracked. In Fig. 5, we can see the set of
five balls with different optical properties illuminated
by three light sources with intensities I1 = I2 = 0.25;
I3 = 0.2, ambient intensity is Ia = 0.3. For the big
ball, it is: s = 0.7; d = 0.2; a = 0.1. For the smaller
balls is (from the left): s1 = 0.8; d1 = 0.15; a1 = 0.05;
s2 = 0.6; d2 = 0.3; a2 = 0.1; s3 = 0.4; d3 = 0.4;
a3 = 0.2; s4 = 0.1; d4 = 0.4; a4 = 0.5.

Algorithms that process a scalar field can be classi-
fied into two groups: surface fitting algorithms SF algo-
rithms) and direct volume rendering algorithms (DVR
algorithms). SF algorithms construct a geometric sur-
face representation of the scalar field to be displayed,
and then construct this surface. DVR algorithms dis-
play the scalar field directly without surface represen-
tation.
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Raster data do not contain any “vector” information
on saved objects. From these data, it is not possible to
find out in a simple way whether an image is composed
of cubes, spheres or something else. A file contains
information on the size of the image, on the way it
may have been compressed and on the colour encoding
used. The image itself is saved as a matrix and each
element of this matrix represents one image pixel. Most
of the displaying devices (monitors, printers, cameras,
etc.) work on this principle.

Data provided by a confocal microscope are also
raster. Separate optical cuts represent different height
levels of the observed object. Therefore, its series pro-
vided 3D data grid – see Fig. 6.

Figure 6: 2D processing of a series of optical cuts.

2D processing of this grid can be done in several
ways. We can use the First intensity projection al-
gorithm (FIP) which finds the first non-zero intensity
in separate columns created by corresponding pixels,
Maximum intensity projection algorithm (MIP) dis-
plays the maximum intensity in the processed column.
Summed intensity projection algorithm (SIP) displays
the sum intensity along the column and the average in-
tensity projection algorithm (AIP) displays the arith-
metic mean of intensity in the column.

Most of the image order methods are based on
the approximation of volume rendering integral (VRI)
which considers volume as participating medium. Par-
ticipating medium is a cloud consisting of small par-
ticles where each particle can absorb, emit or scatter
light.

The idea of volume rendering integral was first de-
scribed by Blinn [5]. Infinitesimal particles are consid-
ered as intensity emitters as well as attenuation source

dI

ds
= g(s)− τ(s)I(s) (2)

where s is a length parameter, g(s) is emission intensity
at distance s, I(s) is light intensity at distance s. The
coefficient τ(s) is called the extinction coefficient and
expresses the rate of decline of light intensity along a
ray.

For intensity I(s1) at point s1, solution of (2) is

I(s1) = I0e
−

∫ s1
s0

τ(t)dt
+

∫ s1

s0

g(s)e−
∫ s1
s

τ(t)dtds (3)

or alternatively for I(s0)

I(s0) = I1e
−

∫ s0
s1

τ(t)dt
+

∫ s0

s1

g(s)e−
∫ s0
s

τ(t)dtds (4)

We have to approximate these integrals. We employ
discrete Riemann sum over the casted ray with discrete
samples at distances spaced apart by ∆s. By such
discretization of (3), we get

I(s1) = I0e
−

∫ s1
s0

τ(t)dt
+

∫ s1

s0

g(s)e−
∫ s1
s

τ(t)dtds

≈ I0e
−

∑n
i=1 τ(i∆s)∆s +

n∑
i=1

g(i∆s)e−
∑n

j=i+1 τ(j∆s)∆s

= I0

n∏
i=1

e−τ(i∆s)∆s +
n∑

i=1

g(i∆s)
n∏

j=i+1

e−τ(j∆s)∆s

where n = |s1 − s0|/∆s. If we denote T (s) ≈ t(i∆s) =
ti and g(i∆s) = gi, we obtain

I = I0 ·
m∏
i=1

ti +
m∑
i=1

vi

m∏
j=i+1

tj

 (5)

(Back-to-Front algorithm - BtF) or from (4) alterna-
tively

I = I0 ·
m∏
i=1

ti +
m∑
i=1

vi

i∏
j=1

tj

 (6)

(Front-to-Back algorithm- FtB).
These algorithms are able to simulate the trans-

parency of an object: viare values of voxels; ti its trans-
parencies and I0 is the intensity of ambient light.

2.3 Projection

For 3D visualization, we can relatively easily use a par-
allel projection method which simulates a long-distance
camera, and centre projection methods to model a
camera situated closer to the object. In projective
geometry, each point X in 3D space is described by
a quartet of homogenous coordinates X = (x; y; z;ω)
where ω = 0 if and only if the point X is at infinity
(so called non-eigen point), ω ̸= 0 in other cases (X is
a “classical” point). The projection of the point X to
the point X ′ is described as

x′

y′

z′

ω′

 =


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

 ·


x
y
z
ω


X ′T = MXT

(7)

where M is a projection matrix. There is m44 ̸= 0 and
m41 = m42 = m43 = 0 in case of a parallel projection,
m44 ̸= 0 and m41 ̸= 0 or m42 ̸= 0 or m43 ̸= 0 in case
of a centre projection.
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2.4 3D Processing of the Raster Data - SF Algo-
rithms

Vector visualization algorithms are, by default, used
for 3D vector data, but they can be used for raster
data as well (including confocal microscopes data).

One of the most known algorithms which solved this
problem is called the Marching Cubes Algorithm. It
proceeds through each cube, then determines the poly-
gon(s) needed to represent the part of the isosurface
that passes through this cube. This is done by evalu-
ation of each cube vertex by value 2n, n = 0, 1, . . . , 7
(see Fig. 7). If the scalar’s value in n-th vertex is
higher than the iso-value then 2n is added to a counter.
Its final value determines the polygon which needs
to be constructed. In Fig. 7; the counter value is
20 + 21 + 23 + 24 + 25 = 59. Note that there are 256
possibilities in all, however, this number can be reduced
to fifteen using symmetries.

Figure 7: Principle of the Marching Cubes Algorithm.

Figure 8: 3D generalization of 2D processing of the
optical cuts series.

2.5 3D Processing of the Raster Data - DVR Al-
gorithms

For a DVR algorithm, it is necessary to generalize 2D
processing of 2D grid which is shown in Fig. 6. Its 3D
generalization is illustrated in Fig. 8. The coordinates
of a point where a projection line enters a system of
cuts (initial voxel), are known and the coordinates of
a point where the projection line leaves the system of
cuts (terminal voxel), are known as well (see Fig. 8).
It is necessary to find out which voxels lie on the line
segment bounded by the input and output. However,
planar Bresenham’s algorithm deals exactly with this
situation: the coordinates of the basepoint and end-
point of a line segment are known and we color the
pixels lying between them. So it is necessary to gener-
alize this algorithm for the 3-D space.

In literature, this procedure is often called the ras-
terization of a line segment. We can calculate the inter-
section of the projection line with the surface of each
voxel – we can call it an intersection algorithm (IA).
However, this process is very time-consuming. A fast
graphic algorithm for 2D line construction comes from
Bresenham — see [2] or [4]. Some generalizations of
this algorithm for the 3D space are known as well —
see [4, 3, 13, 9] for example. After 3D generalization,
all methods mentioned the previous section (FIP, MIP,
SIP, AIP, BtF, FtB) can be used as DVR algorithms.

In Fig. 9 – 12, a brief overview of the results of
existing methods of cell structure visualization is il-
lustrated. In Fig. 9, we can see the 3D processing
of raster data from Fig. 1 using the Marching Cubes
algorithm. Two cells of infusorian Paramecium cau-
datum with overlapped anterior, detail (micronucleus)
were chosen by the rectangle on the 2D reconstruction
using AIP (left) and MIP (right) in pseudocolors.

Fig. 10 illustrated DVR 3D processing of the data
from Fig. 2. High noise in these data is a great problem
for current methods. Noise can be obviously reduced
by appropriate thresholding, however, in this case, this
technique is not very successful. To low threshold im-
plies drowning of the data in the brutal noise (on the
left), slightly higher number results in a loss of use-
ful information (on the right). Fig. 11 illustrated 3D
visualization of raster data from Fig. 3.

Although the input data is of high resolution
(1600×1600 pixels), the quality of the output (espe-
cially of the detail – cell nucleus on the right) is not
very good.

In Fig. 12, 3D processing of data from Fig. 4. Due
to low method resolution, the quality of the output
(especially of the details - micronucleus) is poor, due
to low input data resolution, and artifact grid structure
is visible. The intersection algorithm (IA) was used for
projection into 2D in Fig. 10, 11, and 12.
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Figure 9: SF 3D processing of raster data from Fig. 1 using Marching Cubes algorithm. The central projection
with viewing angle 25◦ and Phong illuminant model with one light source are used.

Figure 10: DVR 3D processing of raster data from Fig. 2 using FtB algorithm. The central projection with
viewing angle 35◦. The images differ in threshold value – 10 on the left, 20 on the right.

Figure 11: DVR 3D processing of raster data from Fig. 3 using common FtB algorithm. The central projection
with viewing angle 10◦ is used.
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Figure 12: DVR 3D processing of raster data from Fig. 4 using common BtF algorithm. The central projection
with viewing angle 10◦ is used.

3 Proposed Method for DVR 3D data Vi-
sualization

3.1 Rasterization of a Line Segment

We know from linear algebra that a set W⊥ = {v ∈
V | ∀w ∈ W : w ⊥ v} where V is the linear space and
w, v are vectors, is called the orthogonal complement
of the space W in V . It is known, that for all v ∈ V
exists one and only one p ∈ W and c ∈ W⊥; where
v = p + c. The vector p (or c) is called an orthogo-
nal projection (or a component) of the vector v with
respect to subspace W .
Let us denote by x ∈ V (3) an arbitrary vector of 3D

vector space. A mapping that projects this vector into
a general plane with normal vector n = (n1;n2;n3) (an
orthogonal supplement of space ⟨n⟩⊥) is given byp1

p2
p3

 =

1− n2
1 −n1n2 −n1n3

−n1n2 1− n2
2 −n2n3

−n1n3 −n2n3 1− n2
3

x1

x2

x3

 (8)

The vector p = (p1; p2; p3) is the orthogonal projection
of x, the component c = (c1; c2; c3) is given by

c = (x;n) · n =

(
3∑

i=1

xini

)
· n (9)

Let us denote by ⟨e1; e2; e3⟩ the vector space gener-
ated by orthogonal base {e1; e2; e3}. We use orthogo-
nal projections p1;2; p1;3 and p2;3 of a direction vector
u = (u1;u2;u3) into subspaces ⟨e1; e2⟩; ⟨e1; e3⟩ and
⟨e2; e3⟩. Our situation is simplified by the fact that
the direction of a projection line is collinear with some
base vector in all cases. Fig. 13 illustrates the projec-
tion of the vector u into the subspace ⟨e1; e2⟩. Thus,
the general formula (5) need not be used because, if
u = (u1;u2;u3) and {e1; e2; e3} is the orthogonal base,
then

p1;2 =u1e1 + u2e2 = (u1;u2; 0)

p1;3 =u1e1 + u3e3 = (u1; 0;u3)

p2;3 =u2e2 + u3e3 = (0;u2;u3)

(10)

The coordinates u1;u2;u3 of the direction vector u ∈
V (3) can be obtained by two of the three projections

Figure 13: Projection p1;2 of the direction vector u of
a projection line into the subspace ⟨e1, e2⟩.

(4) which can be generated on an output device by
Bresenham’s algorithm described in Section 2. Thus,
the generalization for a space results in Bresenham’s
algorithm being used twice. The plane in which it is
supposed to work constitutes its additional parameter.

3.2 Illuminant Model for the Raster Data

Some improvements of the methods described in Sec.
2.2 were proposed — see [5, 6, 7, 12, 14] for example.
It is recommended to apply some illumination models
for improving previous outputs.

As was said in Sec. 2.2, there must be given a norm
of surface point for illumination model calculating. But
there exists no surface in a scalar field; the norm is
therefore replaced by the gradient of this field in the
point P . It is defined as

NP ≈ grad G(P ) =
(

∂G
∂x (P ); ∂G

∂y (P ); ∂G
∂z (P )

)
(11)

for the differentiation able function G which defines the
value of the scalar field in dependence on the point P
– see [12], [15] for example.

In the case of discrete data, this expression must be
replaced by a vector of first central differences

NP ≈ grad G(P ) ≈
(
∆1

xG(P ),∆1
yG(P ),∆1

zG(P )
)

(12)

where P = [xi, yi, zi] and

∆1
xG(P ) =

1

2
(G(xi+1, yi, zi)−G(xi−1, yi, zi))

∆1
yG(P ) =

1

2
(G(xi, yi+1, zi)−G(xi, yi−1, zi))

∆1
zG(P ) =

1

2
(G(xi, yi, zi+1)−G(xi, yi, zi−1))

(13)
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Figure 14: Distance d of the voxel V from the projec-
tion line.

However, the application of an illumination model can-
not solve two problems said in the previous section:
noise reduction and compensation for insufficient data
resolution. Thus the question arises: is it possible to
find a method by means of which we will be able to
abolish at least one of these insufficiencies? The re-
sponse to this question is positive. A suitable 3D filter
is possible to solve both of these problems.

For each projection line p and each processed voxel P
(see Fig. 8), the cubic neighborhood N which contains
(2n+1)3 voxels is setting. This situation is illustrated
in Fig. 14 for n = 3 in 2D for simplicity. Distance d of
each voxel V of this neighborhood from the projection
line is calculated as:

dV =
||p× v||
||p||

(14)

The weight cV of the voxel V is specified using the
Hanning window function

cV =

{
1
2 ·
(
1 + cos π·dV

rmax

)
, dV < rmax

0, dV ≥ rmax

(15)

where rmax is the “radius of activity” of the processed
voxel P . The estimation of total density dP and the
normal vector nP in processed voxel P is then calcu-
lated as the weighted average of all voxels in a given
neighborhood N

dP =

∑
V ∈N cV vv∑
V ∈N cV

; nP =

∑
V ∈N cV nv∑
V ∈N cV

(16)

4 Results and Discussion

DVR method proposed in Sec. 3 works as 3D low-pass
filter, i. e. it is possible to decrease high frequencies in
the sense of the Fourier transform. It means that they
effectively clear an additional noise. In Fig. 15 we can
see a 3D model which is constructed using data from
Fig. 2. Although this data contains a lot of noise, the
3D model is clear and relatively good quality (compare
with Fig. 10). Video with some results is available for
download from the author’s website1.

1https://dmartisek.cz/Veda/Paramecium_Euplotes_En.m4v

5 Conclusion

Cells observed by conventional or confocal microscopes
are often highly transparent or translucent and do not
produce visible shadows due to the transparent geom-
etry of the structure inside the cell. Therefore, the
current methods assume that an illumination model
designed for surfaces cannot be used to visualize of
cell structures. In this paper, it has been shown that
the illuminant model can also be used for transparent
or translucent objects described by raster data. After
some modification, it is even possible to use models
originally developed for CAD (Computer Aided De-
sign) systems. These systems are usually used in en-
gineering. The modified Phong model formulas were
applied to each voxel of processed three-dimensional
data. Our method allows using central projection not
only for vector data but also for raster data. This is
another important step for cellular representation. Our
new method can be characterized by a “free camera”.
We can place the camera not only outside the cell (Fig.
15, 16, and 17) but also inside the cell (Fig. 18).

Acknowledgement: The author acknowledges sup-
port from Private Institute of Applied Mathematics,
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Figure 15: DVR 3D reconstruction of the Tobaco cells from Fig. 2. BtF algorithm; I0 = 0.2; ti = 0.85, cubic
neighborhood for n = rmax = 3, central projection with viewing angle 15◦. Phong illuminant model with one
light source, Ia = 0.2; s = d = 0.4; a = 0.2 (compare with Fig. 10).

Figure 16: DVR 3D reconstruction of Paramecium caudatum cells from Fig. 3. BtF algorithm; I0 = 0.1;
ti = 0.9, cubic neighborhood for n = rmax = 3, central projection with viewing angle 15◦. Phong illuminant
model with one light source, Ia = 0.2; s = d = 0.4; a = 0.2 (compare with Fig. 11).

Figure 17: DVR 3D reconstruction of the Euplotes patella cell from Fig. 2. BtF algorithm; I0 = 0.2; ti = 0.85,
cubic neighborhood for n = rmax = 3, central projection with viewing angle 15◦. Phong illuminant model with
one light source, Ia = 0.2; s = d = 0.4; a = 0.2 (compare with Fig. 12).
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Figure 18: Virtual camera inside the Euplotes patella cell - DVR 3D reconstruction of the cell from Fig. 2. BtF
algorithm; I0 = 0.2; ti = 0.85, cubic neighborhood for n = rmax = 3, central projection with viewing angle 40◦.
Phong illuminant model with one light source, Ia = 0.2; s = d = 0.4; a = 0.2.
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