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Abstract
The Minimum-Volume Covering Ellipsoid (MVCE) problem is an important opti-
mization problem that comes up in various areas of engineering and statistics. In
this paper, we improve the state-of-the-art Wolfe-Atwood algorithm for solving the
MVCE problem with pooling and batching procedures. This implementation yields
significant improvements on the runtime of the algorithm for large-scale instances
of the MVCE problem, which is demonstrated on quite extensive computational
experiments.
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1 Introduction

Let X = {x1, . . . , xm} ⊂ Rn be a finite set of vectors whose affine hull is Rn. In this paper, the problem in
question will be finding the Minimum-Volume Covering Ellipsoid (MVCE) of X , also known as the Löwner-John
ellipsoid. The recently published book [1] gives a wonderful overview of the MVCE problem, and will serve as
our primary source for the introduction and the apparatus for handling the MVCE problem. The idea of MVCE
and the proofs of its existence and uniqueness come from Löwner (unfortunately in an unpublished work). The
first published results about MVCE appear in the 1950’s in [2] and [3]. An earlier result by John [4] about the
suitability of ellipsoids for fitting convex compact sets was also one of the pivotal starting points for the study
of the MVCE problem (hence, the alternative name for the problem is deciphered!). The MVCE problem comes
up in several applied and theoretical areas. It has a strong connection to the optimal design in statistics [5].
Other application in statistics include outlier identification (see [6], [7], and [8]), and clustering (see [9], [10], and
[11]). Containing ellipsoids play an important role in robust optimization [12] and control theory [13]. MVCEs
are also used in computational geometry and computer graphics [14], e.g. for obstacle avoidance in robotics.
One of the standard methods for solving the MVCE problem, the Frank–Wolfe method, is being investigated
for its suitability for solving statistical learning problems [15, 16].

The main contribution of this paper is in the efficient computation of large scale instances of the MVCE
problem (in both the dimension n and the number of vectors m). Our starting point is the Wolfe-Atwood (WA)
method [17, 18] with Kumar-Yıldırım initialization [19]. We describe a pooling scheme, in which we disregard
a large portion of the vectors, solving the MCVE problem for only a small subset of X . Once a solution of
this surrogate problem is found, we look at the whole X and find the points that were the furthest away from
the ellipsoid. These points are then added to the surrogate problem. This procedure is repeated until a “good
enough” solution is found (the precise conditions will be defined in the following sections). A similar idea in
the context of chance constrained optimization problems was investigated in [20] and [21].

2 The MVCE Problem

There are several equivalent mathematical definitions of ellipsoids. The one adopted in this paper is the
following: An ellipsoid E(H, x̄) is a set of the form

E(H, x̄) = {x ∈ Rn : (x− x̄)TH(x− x̄) ≤ n},

where x̄ ∈ Rn is the center of the ellipsoid and H is a symmetric positive definite matrix of order n. Another
way of thinking about ellipsoids is through affine transformations of balls in Rn. In particular, let L be the
Cholesky factor of H, i.e. H = LLT , with L being a lower triangular matrix with positive diagonal entries.
Then x lies in E(H, x̄) iff ||LT (x− x̄)|| ≤

√
n, so that

E(H, x̄) = {x = x̄+ (
√
nL−T )z : z ∈ Rn, ||z|| ≤ 1}.
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The volume of the ellipsoid can therefore be computed as the volume of the unit ball times |det(

√
nL−T )|.

Using the fact that H = LLT , and detH = (detL)2, we get

vol(E(H, x̄)) =
nn/2Ωn√

detH
,

where Ωn is the volume of a unit ball in Rn. This means that if we seek to minimize the volume of the ellipsoid,
we can frame it as a minimization of the negative of the determinant of its shape matrix H. The problem of
finding the MVCE of X then attains the following form:

minimize
H∈Sn

+,x̄∈Rn
− ln det(H)

subject to (xi − x̄)TH(xi − x̄) ≤ n, i = 1, . . . ,m,
(1)

where Sn+ is the space of symmetric positive definite matrices of order n. In the problem (1) the “centering”
variable x̄ causes computational difficulties [1]. These difficulties can be circumvented by “lifting” the MVCE
problem to a higher dimension and solving an equivalent problem, that has x̄ = 0, see [22]. This equivalent
problem is then convex [23] and has the following form:

minimize
H∈Sn

+

− ln det(H)

subject to xTi Hxi ≤ n, i = 1, . . . ,m.
(2)

We say that H is feasible for (2) if it satisfies all m constraints and is positive definite. Denoting ui ≥ 0 the
Lagrange multiplier for the ith constraint, the Lagrangian L(H,u) for (2) is

L(H,u) = − ln det(H) +
m∑
i=1

ui(x
T
i Hxi).

If we denote by e the vector of ones in Rm, by U the diagonal matrix from the values of u:

U = Diag(u) ∈ Sm,

and by X the matrix X = [x1, . . . , xm] ∈ Rn×m, we can rewrite the Lagrangian as

L(H,u) = − ln det(H) +HXUXT − neTu.

After a series of manipulations (see [1]) we obtain a dual of (2):

maximize
u∈Rm

ln det(XUXT )

subject to eTu = 1,
u ≥ 0.

(3)

If the affine hull of X is Rn (or, equivalently, if X has full row rank), the optimal solutions to (2) and (3) are
unique and attain the same optimal objective value [1] (i.e., strong duality holds).

Another important result that concerns our investigation is the following: there is a finite subset of X of
cardinality at most n(n+ 1)/2, such that the MVCE containing this subset is also the MVCE for the whole set
X [1]. This small subset is called a core set. The implication being that the optimal solution to (3) has only
n(n+ 1)/2 positive components. Notice that this number does not depend on the number of points m.

Since these problems cannot usually be solved exactly, we will be interested in finding ε-primal feasible or
ε-approximately optimal solutions: A feasible u for the problem (3) is said to be ε-primal feasible if H(u) =
(XUXT )−1 satisfies

xTi H(u)xi ≤ (1 + ε)n, i = 1, . . . ,m.

Additionally, if it satisfies
xTi H(u)xi ≥ (1− ε)n if ui > 0, i = 1, . . . ,m,

we say that u is ε-approximately optimal.
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Algorithm 1 WA Algorithm

1: procedure Step 0:
2: Choose u feasible for (3) and ε > 0.
3: Compute ω = ω(u) and a (scaled) Cholesky factorization of XUXT .
4: Go to Step 1.

5: procedure Step 1:
6: Given the current iterate u and its associated ω = ω(u):
7: Compute ε+ = maxh{(ωh − n)/n}, with h = i attaining the maximum.
8: Compute ε− = maxh{(n− ωh)/n : uh > 0}, with h = j attaining the maximum.
9: if max ε+, ε− ≤ ε then STOP: u is ε-approximately optimal.

10: else
11: if ε+ > ε− then go to Step 2;
12: else go to Step 3.

13: procedure Step 2:
14: Compute λ∗ = ωi−n

(n+1)ωi
and update u← (1 + λ∗)−1(u+ λ∗ei).

15: Go to Step 4.

16: procedure Step 3:
17: Compute λ∗ =

ωj−n
(n+1)ωj

and set λ = max{−uj , λ∗}.
18: Update u← (1 + λ)−1(u+ λej).
19: Go to Step 4.

20: procedure Step 4:
21: Update ω and a scaled Cholesky factorization of XUXT .
22: Go to Step 1.

3 Solving the MVCE Problem

The primary approaches for solving the MVCE problem have been first-order methods (a modified Frank-
Wolfe method [24]) applied to the dual problem (3), denoted here as the WA method [17, 18]. There exists a
similar method for solving the MVCE problem attributed to Fedorov [25] and Wynn [26] that was proposed at
around the same time as the WA method. However, this method was found computationally inferior to the WA
method in several numerical studies [27]. A parallel line of research was conducted in second-order methods
for solving the primal problem (2). The resulting dual reduced Newton method with an active-set strategy [28]
was successful in being faster than the WA method [27], but could not be used for truly large-scale problems
because of its memory requirements (for problems in higher dimensions n).

In our baseline implementation, we will use the WA method, with its form is taken from [1]. The individual
steps are described in Algorithm 1. An important factor in the efficiency of the WA algorithm is the starting
value of u. Notable initialization schemes are the due to Khachiyan [29], and Kumar and Yıldırım [19]. The
Kachiyan initialization is quite straightforward, choosing u = e/m. The Kumar and Yıldırım (KY) strategy is a
little bit more involved (and also work a bit better), and is described in Algorithm 2. The Steps 0 through 2 of
the algorithm are due to [30]. Another increase in the effectiveness of the implementation of the WA method can
be made by eliminating points that do not belong to the core set. The method for carrying out the elimination
was developed in [31] and the positive impact on the runtime of the algorithm was investigated in [32].

3.1 WA with Pooling and Batching

In a similar fashion to the point elimination [31], our idea of improving the efficiency of WA centers around the
core set. However, instead of reducing the size of the solved problem by eliminating points that do not belong to
the core set, we take what might be conceived as the direct opposite approach. We devise a surrogate problem
that is considerably smaller – a subset X̃ of X – find the MVCE of X̃ by Algorithm 1, and check, whether the
MVCE of X̃ contains all the points of X . If it does, we are done – X̃ had to contain the core set of X and the
MVCE of the two sets is identical. If, however, some points of X lie outside the MCVE of X̃ , the core sets must
differ and we need to update X̃ . In the update, we find the points in X that are the furthers away from the
MVCE of X̃ . The maximum number of points that are added during the update is called a batch size and is
denoted by k. Effectiveness of batching was previously investigated, in the context of stochastic programming,
in [33]. Moreover, we found it computationally advantageous to use the resulting u’s from the computations of
MVCE of X̃ as starting points for the updated iterations. The individual steps are summarized in Algorithm 3.

The selection of points that will be added to the surrogate problem X̃ requires the computation of the
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Algorithm 2 KY Initialization

1: procedure Step 0:
2: Choose an arbitrary nonzero c1 ∈ Rn and set j = 1.
3: Go to Step 1.

4: procedure Step 1:
5: Let z̄j and zj maximize and minimize cTj x over the xh’s. Set yj = z̄j − zj .
6: Go to Step 2.

7: procedure Step 2:
8: if j < n then choose an arbitrary nonzero cj+1 orthogonal to y1, . . . , yj
9: increase j by 1, and go to Step 1.

10: else go to Step 3.

11: procedure Step 3:
12: Compute u by putting equal weight on each of the distinct points Z = {z̄j , zj : j = 1, . . . , n}.
13: STOP.

Algorithm 3 WA with Pooling and Batching

1: procedure Step 0:
2: Choose a batch size k, a subset X̃ of X , and ε > 0.
3: Set the starting values ũS for computing the MVCE of X̃ according to Algorithm 2.
4: Go to Step 1.

5: procedure Step 1:
6: Find the (ε-approximately optimal) solution of the MVCE problem of X̃

using Algorithm 1, with starting values ũS .
7: Get the Cholesky factorization LLT of X̃ŨX̃T and the optimal ũ (these are produced by Algorithm 1).
8: Go to Step 2.

9: procedure Step 2:
10: for xi ∈ X do
11: v(xi) = ||L−Txi||2 − n
12: Compute the set of points in X not covered by the MVCE of X̃ : Xv = {xi : v(xi) > 0}.
13: if Xv = ∅ or Xv ⊆ X̃ then STOP:

the core sets are the same and the ε-approximately optimal solution u to
the whole MVCE problem can be constructed from ũ.

14: else find the k points of Xv with the highest values of v(xi): X̃v = maxkxiv(xi).
15: Set ũS = ũ. Update X̃ ← X̃ ∪ X̃v. Append zeros to ũS to match the size of X̃ .
16: Go to Step 1.

following quantity
||L−Txi||2 − n

for each xi ∈ X . Since L comes from a Cholesky factorization it is an upper-triangular matrix, and the
computation of the inverse does not pose significant computational burden. When implementing Step 2 of
Algorithm 3, one should be careful about properly handling the optimal multipliers ũ. We suppose that the
newly added points to X̃ will be appended to the corresponding matrix X̃, hence the instruction to append the
corresponding number of zeros to ũS . If, for whatever reason, one decided to first somehow sort the individual
vectors xi ∈ X̃ before constructing the matrix X̃, the added zeros to the starting values ũS would appear on
different places (not simply appended).

4 Computational Experiments

Compared to the WA (Algorithm 1), our Algorithm 3 uses two additional “hyperparameters” – the size of
the batch k, and the size (an selection strategy) of the starting subset X̃. In the following computational
experiments, we will vary only the batch size parameter k, leaving the investigation into the impact of the
selection strategy of X̃ as our future work. We will use two different setting for the computational experiments,
both involving random generation of the set X and centered around the origin.

In the first setting each of the m vectors x ∈ X ⊂ Rn follows a multivariate normal distribution x ∼
N (0,Σ), where the individual values σi,j of the covariance matrix Σ follow a standard normal distribution
σi,j ∼ N (0, 1), i, j = 1, . . . , n. This configuration, however, results in the majority of points lying close to the
surface of an ellipsoid (whose shape is guided by Σ), which is quite a special situation [1].
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Table 1: The results from the computational experiments, the first setting. Geometric average of runtimes in
seconds over 10 independent runs. The experiments with “-” were deemed not computationally interesting.

batch size
n m WA 10 20 50 100 200 500 1,000 2,000 5,000 10,000 speedup

1,000 0.005 0.015 0.017 0.014 0.016 0.018 0.014 - - - - 0.382
5,000 0.012 0.025 0.023 0.024 0.021 0.020 0.026 0.028 0.028 - - 0.594

10,000 0.017 0.034 0.034 0.029 0.025 0.028 0.030 0.028 0.030 0.040 - 0.681
50,000 0.046 0.055 0.053 0.044 0.039 0.045 0.033 0.043 0.046 0.055 0.064 1.372

100,000 0.052 0.062 0.058 0.047 0.045 0.042 0.043 0.042 0.047 0.054 0.068 1.234
500,000 0.189 0.179 0.144 0.147 0.134 0.119 0.110 0.085 0.096 0.131 0.145 2.242

1,000,000 0.360 0.289 0.260 0.235 0.203 0.198 0.166 0.149 0.150 0.168 0.191 2.419

5

5,000,000 1.585 1.194 1.025 0.851 0.806 0.749 0.658 0.622 0.549 0.535 0.578 2.965

1,000 0.019 0.059 0.055 0.046 0.043 0.042 0.049 - - - - 0.440
5,000 0.046 0.126 0.120 0.107 0.092 0.086 0.093 0.118 0.115 - - 0.541

10,000 0.043 0.096 0.104 0.099 0.077 0.101 0.072 0.079 0.083 0.103 - 0.588
50,000 0.116 0.215 0.201 0.168 0.137 0.161 0.133 0.108 0.132 0.158 0.194 1.080

100,000 0.185 0.216 0.196 0.174 0.181 0.138 0.132 0.107 0.119 0.163 0.185 1.731
500,000 1.015 0.585 0.478 0.378 0.332 0.299 0.290 0.281 0.225 0.251 0.323 4.503

1,000,000 1.968 0.923 0.761 0.578 0.525 0.466 0.451 0.385 0.331 0.328 0.371 6.004

10

5,000,000 9.735 4.031 2.893 2.409 2.054 1.758 1.684 1.595 1.334 1.154 1.218 8.432

1,000 0.042 0.193 0.139 0.140 0.120 0.090 0.117 - - - - 0.461
5,000 0.085 0.338 0.267 0.222 0.209 0.197 0.178 0.201 0.204 - - 0.476

10,000 0.135 0.439 0.356 0.300 0.276 0.256 0.269 0.210 0.262 0.324 - 0.642
50,000 0.402 0.751 0.521 0.464 0.413 0.405 0.410 0.362 0.296 0.418 0.541 1.359

100,000 0.704 0.887 0.635 0.503 0.473 0.483 0.485 0.459 0.391 0.431 0.589 1.801
500,000 3.484 2.148 1.479 1.073 0.933 0.822 0.761 0.757 0.733 0.677 0.846 5.146

1,000,000 6.441 3.524 2.342 1.632 1.374 1.259 1.031 1.068 1.109 1.018 0.970 6.642

20

5,000,000 30.038 14.701 9.619 6.568 5.238 4.579 3.865 3.426 3.559 3.288 2.735 10.983

1,000 0.147 1.479 0.879 0.502 0.415 0.443 0.386 - - - - 0.381
5,000 0.437 3.260 1.909 1.097 0.891 0.837 0.856 0.722 0.879 - - 0.605

10,000 0.729 4.273 2.504 1.409 1.108 1.013 1.032 1.089 1.016 1.514 - 0.719
50,000 4.667 6.930 3.882 2.150 1.782 1.612 1.667 1.804 1.895 2.082 2.579 2.894

100,000 8.847 9.691 5.351 3.035 2.231 2.156 2.208 2.153 2.417 2.412 3.088 4.108
500,000 44.959 21.683 12.035 6.197 4.289 3.616 3.525 3.362 3.868 4.568 5.488 13.371

1,000,000 89.149 35.820 19.709 10.040 7.015 5.829 4.849 4.764 4.962 6.040 7.074 18.714

50

5,000,000 431.116 144.452 77.452 38.096 25.061 18.624 15.171 13.684 12.471 14.772 15.323 34.569

1,000 0.398 8.760 4.690 2.285 1.461 1.201 0.826 - - - - 0.482
5,000 1.781 29.775 16.046 7.467 4.747 3.408 3.436 3.716 3.484 - - 0.523

10,000 5.048 42.860 22.835 10.670 6.584 4.735 4.514 4.780 5.031 6.466 - 1.118
50,000 30.095 84.405 45.317 20.866 12.846 8.938 7.905 9.080 10.165 14.547 21.159 3.807

100,000 57.330 106.067 56.866 25.921 15.561 10.986 9.318 11.071 12.246 18.836 27.353 6.152
500,000 307.890 216.461 113.914 50.910 29.678 19.930 16.115 17.438 18.294 29.148 48.038 19.106

1,000,000 609.408 315.621 164.033 72.753 41.914 28.012 20.927 22.564 24.355 36.033 56.474 29.120

100

5,000,000 3,033.0 1,043.3 540.582 232.550 129.229 80.630 56.175 51.499 52.057 61.538 84.750 58.896

1,000 0.853 30.127 15.635 6.986 3.840 2.205 1.538 - - - - 0.555
5,000 10.174 286.527 150.195 65.552 36.488 22.073 14.288 13.784 16.305 - - 0.738

10,000 27.303 496.009 261.568 114.592 63.067 38.230 26.362 29.361 48.044 58.744 - 1.036
50,000 139.740 1,304.1 688.714 302.637 168.061 101.514 68.658 71.244 112.661 153.901 154.094 2.035

100,000 284.813 1,932.2 1,002.5 449.379 252.378 151.219 104.397 110.783 141.236 194.298 232.266 2.728
500,000 1,491.5 - - 947.973 527.926 317.777 201.206 191.190 227.911 264.674 369.161 7.801

1,000,000 3,000.4 - - 1,329.8 731.252 426.846 254.428 228.103 279.087 310.343 434.680 13.154

200

5,000,000 15,678 - - 3,204.3 1,720.9 978.962 539.251 422.558 414.344 523.700 632.775 37.839

In the second setting, we will generate instances that should not have the majority of points close to an
ellipsoidal boundary (this procedure is, yet again, taken from [1]). We generate m independent standard Cauchy
random variable and an n ×m matrix A of independent standard normal variables. Then we set each point
xi be the normalized ith column of A times the ith Cauchy sample. The points generated by this procedure
satisfy rotational symmetry, and their distances from the origin are Cauchy.

In the computational experiments, we compare the WA method with the KY initialization and point elim-
ination (the implementation is taken directly from [1]) to our method described in Algorithm 3. We set the
optimality parameter ε = 10−7 for both methods. The selection of X̃ is quite straightforward – we simply pick
the first n vectors of X . We implemented the algorithms in MATLAB 2019a and used a machine with a six-core
AMD Ryzen 5 2600X 3.6 GHz processor and 32 GB RAM.

The magnitude of computational experiments was quite extensive. We varied the number of vectors m
between 1,000 and 5,000,000, the number of dimension n between 5 and 200, and the size of the batch k
between 10 and 10,000. Each of the experiments (for different values of m,n, and k) was carried out 10 times
(in both settings). The results are summarized in Table 1 (for the first setting) and Table 2 (for the second
one).

It is apparent from the results, that the pooling and batching procedures described in Algorithm 3 can
substantially decrease the computational efforts for solving the MVCE problem for the truly large-scale instances.
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Table 2: The results from the computational experiments, the second setting. Geometric average of runtimes
in seconds over 10 independent runs.

batch size
n m WA 10 20 50 100 200 500 1,000 2,000 5,000 10,000 speedup

1,000 0.002 0.003 0.002 0.002 0.003 0.003 0.003 - - - - 0.730
5,000 0.003 0.006 0.008 0.005 0.005 0.005 0.005 0.006 0.007 - - 0.761

10,000 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.005 0.009 - 0.566
50,000 0.006 0.010 0.010 0.007 0.007 0.007 0.008 0.009 0.010 0.017 0.026 0.833

100,000 0.011 0.017 0.017 0.011 0.012 0.012 0.012 0.013 0.015 0.024 0.035 0.963
500,000 0.058 0.057 0.036 0.037 0.037 0.038 0.038 0.041 0.043 0.051 0.063 1.620

1,000,000 0.117 0.109 0.111 0.074 0.072 0.074 0.075 0.077 0.081 0.092 0.108 1.617

5

5,000,000 0.533 0.471 0.313 0.314 0.313 0.313 0.316 0.316 0.320 0.334 0.359 1.702

1,000 0.002 0.007 0.007 0.004 0.005 0.005 0.005 - - - - 0.558
5,000 0.002 0.006 0.006 0.003 0.003 0.004 0.004 0.005 0.006 - - 0.594

10,000 0.003 0.008 0.006 0.008 0.008 0.004 0.005 0.006 0.007 0.014 - 0.682
50,000 0.012 0.024 0.017 0.015 0.010 0.011 0.012 0.012 0.014 0.022 0.033 1.179

100,000 0.021 0.036 0.026 0.026 0.018 0.018 0.019 0.020 0.022 0.031 0.043 1.185
500,000 0.110 0.098 0.095 0.064 0.066 0.066 0.068 0.069 0.073 0.085 0.101 1.711

1,000,000 0.208 0.240 0.179 0.181 0.122 0.121 0.123 0.126 0.128 0.141 0.160 1.720

10

5,000,000 0.998 0.852 0.851 0.581 0.592 0.590 0.587 0.591 0.590 0.614 0.630 1.717

1,000 0.004 0.014 0.008 0.009 0.008 0.006 0.007 - - - - 0.638
5,000 0.005 0.017 0.015 0.011 0.008 0.008 0.008 0.009 0.011 - - 0.701

10,000 0.008 0.024 0.019 0.013 0.009 0.009 0.010 0.011 0.012 0.020 - 0.900
50,000 0.026 0.051 0.037 0.029 0.020 0.020 0.021 0.022 0.024 0.034 0.049 1.306

100,000 0.050 0.081 0.063 0.048 0.032 0.033 0.035 0.036 0.039 0.048 0.064 1.533
500,000 0.239 0.316 0.252 0.253 0.190 0.127 0.128 0.131 0.133 0.146 0.166 1.882

1,000,000 0.458 0.483 0.359 0.243 0.240 0.242 0.244 0.243 0.248 0.261 0.283 1.912

20

5,000,000 2.246 2.847 2.322 1.742 1.164 1.163 1.172 1.163 1.171 1.197 1.221 1.932

1,000 0.015 0.084 0.048 0.031 0.037 0.034 0.022 - - - - 0.716
5,000 0.024 0.113 0.080 0.048 0.041 0.042 0.029 0.029 0.031 - - 0.849

10,000 0.030 0.140 0.070 0.055 0.044 0.045 0.045 0.033 0.035 0.048 - 0.926
50,000 0.133 0.251 0.167 0.110 0.084 0.055 0.056 0.057 0.061 0.079 0.102 2.429

100,000 0.248 0.416 0.284 0.188 0.144 0.094 0.096 0.099 0.099 0.118 0.143 2.634
500,000 1.211 1.680 1.133 0.935 0.568 0.564 0.566 0.383 0.393 0.409 0.438 3.163

1,000,000 2.329 3.237 2.171 1.446 1.460 1.087 0.728 0.737 0.739 0.753 0.779 3.199

50

5,000,000 11.293 13.620 10.249 6.828 5.059 3.423 3.429 3.466 3.526 3.485 3.499 3.299

1,000 0.060 0.552 0.294 0.156 0.117 0.163 0.078 - - - - 0.770
5,000 0.077 0.712 0.380 0.225 0.183 0.144 0.153 0.099 0.113 - - 0.774

10,000 0.141 0.699 0.412 0.248 0.193 0.160 0.101 0.107 0.117 0.144 - 1.402
50,000 0.500 1.373 0.762 0.421 0.344 0.355 0.277 0.284 0.197 0.222 0.295 2.533

100,000 0.927 2.150 1.153 0.653 0.529 0.401 0.411 0.279 0.283 0.315 0.387 3.321
500,000 4.485 7.458 4.177 2.320 1.858 1.881 0.951 0.945 0.974 0.976 1.036 4.747

1,000,000 8.542 14.941 8.006 4.382 3.566 2.643 2.658 1.783 1.795 1.769 1.887 4.828

100

5,000,000 41.466 61.607 34.675 19.387 15.415 11.481 11.730 11.725 7.947 7.850 8.077 5.282

1,000 0.253 3.953 2.111 0.996 0.667 0.531 0.517 - - - - 0.490
5,000 0.438 5.303 2.978 1.496 0.919 0.552 0.589 0.398 0.435 - - 1.099

10,000 0.755 5.705 3.098 1.569 1.018 0.581 0.643 0.648 0.647 0.690 - 1.298
50,000 1.913 8.707 4.651 2.346 1.510 1.197 0.958 1.000 1.028 1.247 1.206 1.996

100,000 3.281 12.114 6.737 3.284 2.050 1.710 1.295 0.865 0.915 1.184 1.519 3.796
500,000 14.543 42.987 21.998 10.566 6.537 5.376 3.999 4.046 4.097 3.086 3.337 4.713

1,000,000 27.823 74.570 38.847 19.303 12.151 9.568 7.290 7.508 4.911 5.278 5.569 5.666

200

5,000,000 135.670 352.154 187.454 89.096 55.879 44.527 33.654 33.772 33.807 22.997 23.269 5.900

The results for the first experimental setting show that the Algorithm 3 was more than 30 times faster for the
largest instances (the speedup column in the tables is the ratio between the runtime of the WA algorithm and
the Algorithm 3 with “optimally” chosen batch size). It also showed, that at least for the first setting, the
“optimal” batch size (the k, for which the algorithm converged the fastest) quite surprisingly did not appear to
depend on the dimension n of the MVCE problem.

The results from the second experiment setting paint a rather different picture. The speedup, although still
significant, was much smaller when compared to the first setting. Moreover, the “optimal” batch size k quite
clearly depends on the dimension of the MVCE problem. An important observation is that there is no clear
dependence on the number of vectors m. A reasonable rule of thumb for the choice of k for problems that are
similar to the second setting seems to be between k = 5n and k = 20n.
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5 Conclusion

The MVCE problem comes up in various real-world problems in engineering and statistics. In this paper,
we described an improving pooling and batching scheme for the Wolfe-Atwood method for large-scale MVCE
instances. We conducted quite extensive computational experiments and showed that the “optimal” batch size
k depends on the structure of the problem – there is a qualitative difference in its dependence on the dimension
n of the problem between first and second experimental setting. The computational experiments showed great
promise, regarding the implementability and the usefulness of the proposed algorithm, but there is still much
work to be done. The proposed method should be implemented on real-life problems, to get a clearer picture
of the improvements it provides. The importance of the selection of the starting set X̃ and different selection
criteria for updating said set should be further looked into. Another possible line of research constitutes the
inclusion of the discarding methodology developed in [21] for “Ellipsoidal peeling” in experiment design [34].
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